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Preface 

“Crop Statistics are important for planning, policy making and timely interventions to address 

food security” – Elijah Cheruiyot. 

The agricultural sector is ‘ploughed up’. Unmanned aerial systems (UAV) have been making 

important contributions to the technological revolution in agriculture. Equipped with several 

sensors and microcontrollers, NIR and multispectral cameras, GPS receivers and many more, they 

support farmers in the efficient use of plant protection products, providing important data on the 

type of soil and protecting crops from diseases. Accurate and timely estimates or prediction of 

crop production in regional scale is critical for many applications such as food security warning 

system, agricultural lands management, crop insurance, food trade policy and carbon cycle 

research. 

Reliable estimates of crop yields are important planning tools (Doraiswamy et al. 2003). The 

earlier in a growing season that an accurate yield prediction can be made, the more useful the 

analysis will be. 
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1. Introduction 

1.1 Background 

Crop yield monitoring and estimation have proved to be of vital importance for planning and for 

taking various policy decisions. The early prediction or forecasting of crop yield well before 

harvest is crucial especially in regions characterised by climatic uncertainties. This enables 

planners and policy makers to determine the amount of crop insurance to be paid to farmers in case 

of famine or a natural calamity. It also enables decision makers to predict how much to import in 

case of shortfalls or export in case of surplus. 

Precision agriculture (PA) is the application of geospatial techniques and remote sensors to identify 

variations in the field and to deal with them using alternative strategies. Precision agriculture is a 

way of addressing production variability and optimising management decisions. Precision 

agriculture accounts for production variability and uncertainties, optimises resource use and 

protects the environment (Gebbers and Adamchuk, 2010; Mulla, 2013).By definition, a complete 

precision agriculture system consists of four aspects:  

■ Field variability sensing and information  extraction,   

■ Decision  making,   

■ Precision  field  control,  and  

■ Operation and result assessment (Yao et al., 2011). 

Precision agriculture adapts management practices within an agricultural field, according to 

variability in site conditions (Seelan et al., 2003). 

Variability is well known to exist within many of agricultural fields. The causes of variability of 

crop growth in an agricultural field might be due to tillage operations, influence of natural soil 

fertility and physical structure, topography, crop stress, irrigation practices, incidence of pest and 

disease etc. Effective management of the crop variability within the field can enhance financial 

returns, by improving yields and farm production and reducing cost of production. Various inputs 

to the farm such as fertilizers, irrigation, pesticides, seeding, etc. can be adjusted and applied 

precisely according to the variability in soil properties and crop growth (Atherton et al., 1999). 
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A farmer or agronomist can program a UAV to fly a directed path whenever they want. This allows 

a crop to be monitored for things that might be of interest in the growth of the plant. UAVs are 

capable of providing ultra-high resolution images, video capturing and NIR photography. The 

potential application of UAVs in agriculture is limitless. Some of them are as under: 

■ Identifying and monitoring the spread of crop destroying weeds/pests 

■ Monitoring the crop health 

■ Nitrogen content mapping, soil brightness mapping 

■ Crop cover, Biomass estimation, yield prediction. 

Aerial images have been widely used for crop yield prediction before harvest. These images can 

provide high spatial cloud free information of the crop’s spectral characteristics. Analysis of 

vegetation and detection of changes in vegetation patterns are important for natural resource 

management and monitoring, such as crop vigour analysis. Healthy crops are characterized by 

strong absorption of red energy and strong reflectance of NIR energy. The strong contrast of 

absorption and scattering of the red and near-infrared bands can be combined into different 

quantitative indices of vegetation conditions. 

Biophysical parameters such as plant height and biomass are monitored to describe crop growth 

and serve as an indicator for the final crop yield. Multi-temporal Crop Surface Models (CSMs) 

provide spatial information on plant height and plant growth. 

1.2 Problem Statement 

Remote Sensing data provides high quality spatial and temporal information about land surface 

features which include the environmental impacts on crop growth conditions. It has been proved 

to be an effective tool to assess and monitor vegetation parameters, crop vigour and yield 

estimation.  

However, the problem lies in the fact that most of the studies are conducted at a national/regional 

level covering very large areas. The use of low resolution images have resulted into generalisation 

of the crop condition and yield estimates. The coarse resolution also had a mixture of crops and 

other non-crop vegetation that was later correlated to the final crop yield. 
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On the other hand, relatively few studies have been conducted based on the relationship between 

remote sensed data and field scale crop yield. At this particular stage, the yield or agricultural 

production is a result of several complex factors that use other external parameters to compute the 

yield. 

Agricultural production is also influenced by the following variabilities: yield variability, field 

variability, soil variability, crop variability, anomalous factor variability and management 

variability (Oliver et al., 2013; Zhang et al., 2002). Those variabilities result in differences in crop 

growth within agricultural fields that can be quantified by monitoring crop canopy variables 

throughout the growing season.  Important  variables  in  this  context  include  leaf  area  index  

(LAI),  biomass,  and nitrogen status (Hansen and Schjoerring,2003; Serrano et al.,2000). 

Also, the crop insurance claim is usually calculated on the basis of crop cutting experiments. 

Therefore there has always been a problem in getting timely and accurate data, due to which 

payment of claims to farmers were getting delayed. Currently claim adjusters often have to 

physically walk out into a field to measure the extent of crop damage.  

Therefore, developing an assessment tool with the aid of UAV acquired imageries that will not 

only compute the yield potential of a particular crop but also estimate the amount of crop insurance 

that can be paid to farmers. 

1.3 Specific Objectives 

The major objectives of this study are as follows: 

1. To develop a remotely sensed vegetation index based yield model for a corn crop using high 

resolution airborne imagery. 

2. To identify the crop cover, detect the presence of weeds that affect the growth of crops and its 

subsequent yield. 

3. To compare the yield estimated from the UAV data with the existing yield estimating 

technology. 
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2. Literature Review 

Monitoring agricultural crop conditions during the growing season and estimating the potential 

crop yields are both important for the assessment of seasonal production. 

Accurate and timely assessment of particularly decreased production caused by a natural disaster, 

such as drought or pest infestation, can be critical for countries where the economy is dependent 

on the crop harvest. Early assessment of yield reductions could avert a disastrous situation and 

help in strategic planning to meet the demands. 

2.1 Defining Precision Agriculture or Farming 

The American National Research Council defined precision agriculture (or precision farming) as 

“a management strategy that uses information technology to bring data from multiple sources to 

bear on decisions associated with crop production”. It is commonly admitted that it encompasses 

all the techniques and methods of crop and field information gathering that help taking into account 

in crop management the local and site-specific heterogeneity. Remote sensing image products, 

such as biophysical parameters maps for instance, have proven to be of high information content 

for that purpose, especially thanks to their spatial dimension. Vegetation indexes, derived from 

accurately calibrated remote sensing images, can help producing such maps by means of empirical 

or modelled relationships. They are now widely used by the remote sensing community especially 

to provide coupled agronomical and spatial information about cereal crop status like wheat. Such 

products are then often assimilated in crop models to derive more complex crop stress information 

or even directly integrated into a Geographical Information System for precision practices 

management. 

2.2 Conventional Ground-Based Techniques 

This technique was more common in the past when current technologies were not available. The 

traditional approach of data collection for crop monitoring has involved ground-based visits and 

reports. These conventional techniques are subjective, time consuming and complex resulting in 

information being available very late, usually after harvesting. Also, they are prone to large errors 



 

14 

 

due to incomplete ground observations leading to poor crop yield assessment and crop area 

estimations. Even at present in India, crop yield estimation and yield loss due to natural calamity 

is calculated based on field reports and assessment of crop-cutting experiments by district and 

block agriculture officers. Since these reports are often mired in inconsistencies, insurers end up 

processing inadequate claims.  

2.2.1 Crop Cutting Experiment 

The traditional approach of crop estimation involves a complete enumeration for estimating crop 

acreages and sample surveys based on crop cutting experiments for estimating crop yield. The 

yield surveys are fairly extensive with plot yield data collected under a complex sampling design 

that is based on a stratified multistage random sampling design.  

Nielsen (2004) studied the yield component method, which is the most simple and common 

technique to estimate crop yield. This technique involves a stratified random sampling procedure. 

The yield sample locations are selected from each of the study fields and the average yield obtained 

from each sampling site would be used to calculate per acre yield.  

The techniques of crop cutting vary greatly in different parts of the world. The techniques used are 

dependent upon a number of factors. These factors include the administrative setup, type and size 

of field staff, farmer cooperation, crop practices, and harvest conditions. Consequently, it is not 

possible (nor desirable) to lay down a single uniform approach for crop-cutting surveys. However, 

all crop-cutting surveys do have one element in common. One or more plots (or groups of plants) 

are chosen as samples from commercial fields. The plots comprise only a small fraction of the total 

area in the field. Therefore, it is not possible to estimate the yield in an individual field with 

acceptable statistical precision unless many plots are selected. The yields calculated from one or 

two plots in a field are not highly correlated with the yield for the entire field because the mean of 

all plots in a field is statistically independent of the individual plots. Where it is desired to estimate 

or compare yields for individual fields, the number of plots needs to be large. For instance, small 

field plots consisting of less than 200 square feet have a within-field coefficient of variation of 

approximately 20-25 percent for yield per acre. Therefore, an estimate of yield for an individual 
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field would require around 20-25 units per field to achieve a standard error of the mean equivalent 

to a coefficient of variation of 5 percent. 

In general, measuring yields annually by crop cutting for small political or many administrative 

districts within a country is too costly. However, attempts have been made to employ auxiliary 

data or double sampling involving a large number of fields as a basis for adjusting a smaller crop-

cutting survey to obtain current yields for small geographic regions. Typically, eye estimates of 

yield per acre are made for many fields and a random subsample of fields for crop cutting is taken.  

In case of corn, the estimated yield is calculated by multiplying the year number by average row 

number by kernel number and then dividing the result by 90, which represents the average kernel 

weight. For other sampling sites the same procedure described above was followed, and eventually 

the yield obtained from each sampling sites was averaged to obtain the estimated yield for the 

entire field. This method, as said earlier, is time consuming, tedious, and inefficient as it does not 

account for the variation in field crop growth conditions. 

2.3 Remote Sensing Techniques for Precision Agriculture 

The use of remote sensing data for precision agriculture started in early 1980s. The data were used 

to study variations for crop and soil conditions. Remote sensing technology applications for 

monitoring vegetation condition has been studied extensively during the past several decades, 

providing timely assessment of changes in growth and development of agricultural crops. 

Multispectral remote sensing plays a major role in precision agriculture due to its ability to 

represent crop growth condition on a spatial and temporal scale as well as its cost effectiveness. 

Multispectral remote sensing significantly helps in exploring the relationships between crop 

biophysical data namely vegetation development, photosynthetic activity (PAR), biomass 

accumulation , leaf area index (LAI), and crop evapotranspiration (ET), with crop production 

(Jayanthi, 2003). 

Many empirical relationships have been established in the past between spectral vegetation indices 

and leaf area index, fractional ground cover and crop growth rates through ground sampling. These 

relationships are then used by the crop growers to estimate the expected yield of crops prior to 
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harvest in order to make crop management and production-related decisions for maximizing field 

productivity and market gains. 

Crop production and yield estimation both have a direct impact on the economic development of 

a nation and food management (Hayes and Decker, 1996). Airborne multispectral remote sensing 

has been used in assessing the crop yield conditions. It has been often used in estimating crop yield 

for a variety of crops in the past years (Yang, Bradford, and Weigand, 2001; GopalaPillai and 

Tian, 1999). Singh et al. (1992) studied the use of satellite spectral data in estimating the crop yield 

surveys. 

2.3.1 Satellite Imagery 

With the successful launch of high resolution multispectral satellites, the use of satellite data in 

agriculture sector has increased tremendously. Although imagery is available from satellite 

systems, there are some distinct disadvantages associated with their use, such as higher cost for 

smaller spatial extent, as well as lower spatial and temporal resolution. Though satellite remote 

sensing covers large areas and the analysis can be done in a single image consuming less time, 

data can be recorded in different wavebands which provide accurate information about the ground 

conditions, readily available historical data and the data can be acquired without any administrative 

restrictions. Satellite images have problems like data masking due to cloud presence, lower spatial 

resolution, data not being available readily for real time management of crop growth due to fixed 

temporal frequency and correction of radiometric data because of atmospheric interference. 

The normalized difference vegetation index (NDVI) derived from the visible and near-infrared 

(NIR) bands of the NOAA AVHRR satellite has been successfully used to monitor vegetation 

changes at regional scales (Tucker et al., 1983). 

Temporal changes in the NDVI are related to net primary production (Malingreau et al., 1986; 

Goward et al., 1987; Prince, 1991). Tucker and Sellers (1986) provided a theoretical background 

to relate primary production estimates based on the absorption of photosynthetically active 

radiation (PAR) by the canopy. Satellite observations can also provide an estimate of biomass. 

Earlier field studies conducted by Daughtry et al. (1983) and Asrar et al. (1985) provided 
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experimental validation of this theory that relates spectral reflectance to biomass production of 

vegetation at field and regional scales. 

Remote sensing methods have been developed for non-destructive monitoring of plant growth and 

for the detection of many environmental stresses which limit plant productivity. 

2.3.2 Aerial Platform and UAV Technology 

In recent years, Unmanned Aerial Vehicles (UAVs) became widespread in RS (Colomina and Mo-

lina, 2914; Shahbazi et al., 2014). Van Blyenburgh (1999) defines UAVs as uninhabited, reusable, 

motorized aerial vehicles. UAVs rely on microprocessors allowing autonomous flight, nearly with-

out human intervention (Nonami et al., 2010). 

Modern airborne imaging technology based on unmanned airborne vehicles (UAVs) offers 

unprecedented possibilities for measuring our environment. For many applications, UAV-based 

airborne methods offer the possibility for cost-efficient data collection with the desired spatial and 

temporal resolutions. An important advantage of UAV-based technology is that the remote sensing 

data can be collected even under poor imaging conditions, that is, under cloud cover, which makes 

it truly operational in a wide range of environmental measuring applications. 

2.4 Benefits of Drone Technology 

Data collection with unmanned aerial vehicles (UAVs) have been known to fill a gap on the 

observational scale in remote sensing by  delivering high  spatial  and  temporal  resolution  data 

that  is  required in  crop growth monitoring. The latter is part of precision agriculture that 

facilitates detection and quantification of within field variability to support agricultural 

management decisions. 

A major advantage over satellite imagery is the independence of clouds and revisit time and fast 

data acquisition with real time capability (Berni et al., 2009; Eisenbeiss, 2009). Furthermore, high 

temporal resolution is given through high flexibility in data acquisition (Aber et al., 2010; Shahbazi 

et al., 2014). Those characteristics make UAVs highly suitable for many agricultural applications 
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(Jensen et al., 2007; Swain and Zaman, 2012). Compared to satellite remote sensing, aerial imagery 

is more applicable to precision crop management due to the following advantages: 

■ Images can be acquired frequently over the study area throughout the crop growing season, 

■ Image acquisition can be rescheduled to a cloud free day if there is data mask due to cloud 

on the day of acquisition, 

■ Superior resolution- high spatial resolution showing soil and crop growth variability, 

■ Cost per acre is relatively low when scanning large areas 

Though aerial remote sensing is more relevant to precise crop management in terms of resolution, 

it does have problems like band to band registration, geo-rectification and mosaicking of images 

that involve manual efforts, bidirectional reflectance variations, and lens vignetting effects. Apart 

from these issues, aerial remote sensing offers the best soil and crop growth variability information 

with very high spatial resolution less than 0.5 m something which satellite sensors cannot.  

In areas with mixed cropping pattern, aerial remote sensing can be effectively used to delineate 

the crop type and land use. Drones can also be used effectively in crop insurance—not only to 

determine the actual cultivable land, but also during the claims process to understand the extent of 

loss and the actual yield. The high resolution imagery from drones will help in getting accurate 

data to enable crop insurance companies to give proper compensation to affected farmers. 

The benefits of UAVs surpass its disadvantages in ways like: 

■ When equipped with high precision cameras, they can help adjusters understand the true 

health of a field using a multispectral sensor. 

■ With their ability to cover distances quickly, drones can reduce the time it takes to settle 

claims from days to hours. 

■ Based on weather trends, drones can also be proactively positioned in areas of high claim 

activities and deployed the moment a new order comes in. 

■ Additionally, since drones can relay information back to remote specialists in real time, 

more claims can be resolved within a shorter time frame, making for a faster and 

streamlined insurance process. 
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In the current scenario, it is very important to validate the satellite data with the existing aerial 

images so as to develop a new and hybrid image analysis method that can provide precise remote 

sensing inputs to facilitate irrigated agriculture at different scales needed for precision agriculture. 

Also it becomes essential to address the complexity of issues in handling and acquiring these 

spatial and temporal remote sensing imagery. 

RS provides such timely information for assessing within field variability to adapt agricultural 

management purposes (Atzberger, 2013). 

2.5 Understanding Corn Phenology 

An understanding of the developmental processes of a corn plant is important in evaluating its 

yield potential. Surveying crop growth during phenological stages is an important component of 

precision agriculture (Hansen and Schjoerring, 2003; Thenkabail et al., 2000). Remote sensing has 

great potential of contributing data for such kind of investigations in the field of precision 

agriculture (Mulla, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Corn Growth Stages 
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Table 1: The Vegetative and Reproductive Stages of Corn 

2.6 Use of Vegetation Indices 

Remotely sensed spectral vegetation indices are widely used and have benefited numerous 

disciplines interested in the assessment of biomass, water use, plant stress, plant health and crop 

production. The successful use of these indices requires knowledge of the units of the input 

variables used to form the indices and an understanding of the manner in which the external 

environment and the vegetation canopy influence and alter the computed index values. Healthy 

crops are characterized by strong absorption of red energy and strong reflectance of NIR energy. 

The strong contrast of absorption and scattering of the red and near-infrared bands can be 

combined into different quantitative indices of vegetation conditions. These mathematical 

quantitative combinations are known as vegetation indices. Since the late 1980s, numerous studies 

Vegetative Stages Reproductive Stages 

Stage Description Stage Description 

VE Emergence R1 Silking - silks visible outside the husks 

V1 One leaf with collar visible R2 Blister - kernels are white and resemble a 

blister in shape 

V2 Two leaves with collars visible R3 Milk - kernels are yellow on the outside with 

a milky inner fluid 

V(n) (n) leaves with collars visible R4 Dough - milky inner fluid thickens to a pasty 

consistency 

VT Last branch of tassel is completely 

visible 
R5 Dent - nearly all kernels are denting 

 R6 Physiological maturity - the black abscission 

layer has formed 
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like Funk and Budde have been conducted on crop 

growth analysis using normalized difference 

vegetation index (NDVI) to support precision 

agriculture.  

VIs are designed to provide a measure of the overall 

amount and quality of photosynthetic material in 

vegetation, which is essential for understanding the 

state of vegetation for any purpose. These VIs are 

an integrative measurement of these factors and are 

well correlated with the fractional absorption of 

photosynthetically active radiation (fAPAR) in plant canopies and vegetated pixels. They do not 

provide quantitative information on any one biological or environmental factor contributing to the 

fAPAR, but broad correlations have been found between the broadband greenness VIs and canopy 

LAI. 

2.7 Crop Yield Monitoring 

The spectral response from a crop 

can be well monitored using 

different spectral and spatial 

resolution depending upon the 

crop phenology and crop type. 

Several studies have shown that 

vegetation health can be very well 

measured using near infrared and 

red wavelength bands. Vegetation 

indices namely GNDVI, ENDVI are used by researchers all over the world to determine the status 

of healthy vegetation and differentiate from other land use changes. Healthy, dense vegetation 

appears brighter and reflects more radiation in the near infrared region of the spectrum whereas 

severely stressed vegetation appears dark and reflects less radiation. 

Figure 3: Spectral Reflectance Curve: Water, Soil, Vegetation 

Figure 2: Reflectance Properties of Leaves in 

different stages 
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Healthy vegetation will have a high GNDVI and ENDVI values because of high reflectance in the 

infrared and low reflectance in the red band due to absorption by chlorophyll in the leaves.  

Crop growth and final yield estimation can be done by learning the land cover change that happens 

during the crop growing season and also throughout the year. Crop growth seasonal change 

provides information related to agricultural management and the annual changes provides 

information about the cropped area or land cover change. The spectral reflectance of different 

surfaces and land cover is presumed to be different.  

Healthy green vegetation has a 

unique spectral reflectance 

pattern based on the leaf 

structure and composition. In 

the visible part of the region, 

chlorophyll in a leaf absorbs 

light in the 0.45μm (blue) and 

0.68μm (red) portion of the 

spectrum and absorbs less in 

the green part of the spectrum 

resulting in a small peak at 0.5-

0.6μm that makes vegetation 

appear green to the human eye. Healthy vegetation reflects more in the near infrared region and 

relatively lower in the red region due to high photosynthetic activity and thus useful for vegetation 

classification and mapping. The moisture content in the leaf results in water absorption at 1.45μm 

and 1.9μm respectively. The spectral reflectance of a crop canopy is influenced by different factors 

such as the crop canopy structure, crop condition, leaf area index, cultural practices, soil moisture 

stress and crop growth stage (Verma et al., 1998). 

Therefore, in recent years, the application of remote sensing techniques for crop yield estimation 

has been gaining importance due to the improvements in the spatial and spectral resolution of 

remotely sensed imagery. Crop growth and yield monitoring is important for the economic 

Figure 4: Spectral response characteristics of a healthy green 

vegetation 
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development of a country and with the aid of remote sensing it has becomes easier to monitor the 

area extent of agricultural crops. 

2.8 Crop Insurance 

A mechanism/ tool / arrangement through which farmers can protect themselves/ get compensation 

for loss or destruction of their crop due to events like flood, drought, pests, diseases or as a result 

of other natural disasters. 

Crop insurance can be offered on an indexed basis, where claims are a function of a defined index 

chosen to be a good proxy for incurred crop loss or on an indemnity basis, where claims are based 

on actual crop losses. There is not yet a consensus amongst academics or practitioners as to the 

best form for crop micro insurance but leading contenders include weather index insurance, area 

yield index insurance and group stop loss indemnity insurance.  

Weather Index Insurance: Claims payments from weather index insurance are a defined function 

of recorded weather at a contractual weather station and are triggered when the recorded weather 

breaches the pre-defined critical levels. 

Area Yield Loss Index Insurance: Area yield loss index insurance claims are a function of average 

local yields for a specific crop, estimated through crop cutting experiments in a sample of local 

farms. Losses arising from yields falling below the average local yields are paid by the insurer. In 

a way, the area yield loss index insurance administered as a group policy combines the benefits of 

reduction of basis risks as actual losses are paid by insurer and also reduces moral hazard as 

individual farmers do not have an incentive to report lower or reduce crop output. 

Group Stop Loss Indemnity Insurance: Here, claims are a function of the total crop loss incurred 

by a large group of farmers, who are joint policyholders 

Area Yield Loss Index group of crop insurance models guarantees yield to the insured producer. 

The guarantee is a percentage of the yield calculated from historic yields (individual or group). 

Indemnities result from a shortfall of the guaranteed yield in the crop year insured. This yield 

shortfall is multiplied by an indemnity price selected by the insured before the insurance period 

begins. 
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3. Study Area 

3.1 Physical Setting 

Perth County is a county of the Canadian province of Ontario, and is located in south-western 

Ontario, 100 kilometres west of Toronto. Perth has an area of 10.36 sq. km is in the heart of Eastern 

Ontario's Rideau River Corridor, halfway between Ottawa - the Nation's Capital and Kingston.  

Perth County is characterized by warm, reasonably wet summers and cold, snowy winters. 

Average daily temperatures range from a low of –7 C in January to a high of 20 C in July. There 

is, however, considerable variability around these averages. For example, a daily high of 14 C was 

recorded on January 14, 1995, while on January 4, 1981, the recorded daily high temperature was 

–32 C. Similarly, daily highs in July have ranged from 36 C to 4 C (Environment Canada 2005). 

Precipitation averages over 100 mm monthly from November through the end of January, while 

during the May to September growing season monthly precipitation averages between 80 mm and 

100 mm. Again, variability in precipitation patterns occurs, with both dry spells and extreme 

precipitation events being possible; a single day storm event on July 28, 1983 brought 137 mm of 

rain to the area (Environment Canada 2005). 

3.2 Agricultural Scenario 

Perth County was selected for this study because it is an example of an established intensive 

agricultural area in Ontario, it has a large farming population and it was already familiar to the 

field researcher. Perth County is a predominantly rural municipality in southwestern Ontario, with 

a population of approximately 38,000. It is a very productive agricultural area, with 90% of the 

land in the County classified as prime agricultural land according to the Canada Land Inventory, 

with soils commonly being clay and silty loams (Perth County 2003). Agriculture creates 29% of 

the county’s employment, and farm gate sales total on average more than $400 million (Canada) 

annually (Cummings and Associates 2000).Stratford is located in Perth County, Ontario's richest 

agricultural region and one of the most agriculturally productive counties in all of Ontario. South-

western Ontario is the heart of the country’s food belt, with soybeans and corn the two biggest 

crops. In Western Ontario, corn yields were 155.6 bushels/acre in 2014 which was down slightly 
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from 157.3 bushels/acre in 2013. Western Ontario includes the counties of Peel, Dufferin, 

Wellington, Halton, Waterloo, Perth, Huron, Bruce, Grey and Simcoe. 

Major Field crops in hectares, 2014  

 

 

 

 

 

 

 

 

 

Table 2: The area covered by different crops 

 

Perth County farmers are very aware of existing climate-related risks that affect their operations. 

However, they are generally unaware of or, in many cases, unconcerned about the potential effects 

of climate change. In part this likely reflects the conventional description of climate change in the 

sector—small increases in average temperature over several decades. However, lack of concern 

regarding climate change does not necessarily increase farmers’ vulnerability to future climate 

risks. Farmers are continually responding to inter-annual climatic variability and employing 

adaptations to reduce their vulnerability to climate risks; a capacity to adapt to current climatic 

variability offers a certain level of preparedness for future climate changes. The capacity can be 

further enhanced by identifying and overcoming factors that constrain adaptation. 

Therefore, an assessment tool that will help them the farmers in protecting their fields from the 

climatic variability is the main aim for the study. 

Crop Number of 

Hectares 

(2014) 

Corn for grain 44,061 

Soy beans 39,552 

Hay 28,283 

Winter wheat 26,054 

Corn for silage 10,362 

Mixed grains 5,055 

Dry white beans 4,111 

Other dry beans 4,008 

Barley and grain 3,741 

Oats and grain 1,051 

Number of Hectares (2014)

Corn for grain Soy beans Winter wheat

Corn for silage Mixed grains Dry white beans

Other dry beans Barley and grain Oats and grain

Figure 5: Chart showing the importance of corn in Perth 
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3.3 Datasets 

The area of interest or the plot of land used for the study lies within the Northern subdivision of 

Perth County, Ontario, Canada. For the purpose of study, images that have been acquired over the 

growing season of a corn plantation of a particular plot of land have been used. Images were 

collected using both RGB and BGNIR sensors at an altitude of 50 meters having an image 

resolution of 1.3 cms. The sample dataset for both the sensors have been displayed below: 

Figure 6: Study Area 
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Figure : Sample Dataset- Visual (RGB) Sensor 

 

 

 

Figure 7: Sample Dataset- RGB and BGNIR Sensor 
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3.4 Season Monitoring 

Surveying crop growth during phenological stages is an important component of precision 

agriculture (Hansen and Schjoerring, 2003; Thenkabail et al., 2000). 

For the purpose of study, images of the same area of interest has been captured three times 

throughout the growing season of the corn crop. The multi-temporal image collection has helped 

us in determining the increase in the biomass content and monitoring the crop growth throughout 

its growing season. Images were collected in June, September and October i.e. during early season, 

mid-season and pre-harvest. This helps farmers in identifying the anomalies or threats during the 

growing season of the crops and take actions which helps in improving its crop productivity and 

yield. 

A way to monitor plant growth is the idea of generating multi-temporal crop surface models 

(CSMs) to allow for comparison of different phonological stages (Bendig et al., 2013; Hoffmeister 

et al., 2013), which has been demonstrated later in the project. 

Figure 8: Early Season 

June, 2015 

Figure 9: Mid-Season 

September, 2015 

Figure 10: Pre Harvest 

October, 2015 
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4. Data Acquisition 

The use of Unmanned Aerial Vehicles (UAV) imagery for GIS data acquisition is constantly 

evolving. The ease of use, agility of  flying , lesser time for generating accurate data, and lower 

data acquisition costs have made UAVs very popular all over the globe .The accuracy of aerial 

data acquired using the UAV is directly related to the spatial resolution of the input imagery. The 

high resolution images from UAV can compete with traditional aerial mapping solutions that 

requires highly accurate alignment and positioning sensors on board.  

A radio‐ controlled UAV based low‐ altitude remote sensing (LARS) platform was used to 

acquire quality images of high spatial and temporal resolution in order to estimate yield and total 

biomass.  

4.1 Platform 

PrecisionHawk provides a completely autonomous UAV, performing low altitude aerial data 

collection and subsequent data management and analysis. Backed with artificial intelligence and 

in-flight diagnostic / monitoring solutions as well as hardware such as processors and interfaces, 

UAV optional add-ons, sensors and a low altitude tracking and avoidance system, it has not only 

been able to automate the data collection itself through autonomous flight and sensor triggering, 

but it has also discovered how to produce high quality of data .  

 

 

 

 

 

 

 

 

 

 
Figure 11: PrecisionHawk 
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4.2 Sensors Used 

 

Table 3: Sensor Information 

4.3 Data Processing 

Generally, two types of software are used for image processing: traditional photogrammetry 

software or computer vision software. Examples for photogrammetry software are Leica 

Photogrammetry Suite (LPS) and PhotoModeler. The photogrammetric approach starts with 

camera calibration, followed by ground control point (GCP) identification and tie point research 

either automatic or manual depending on the software (Sona et al., 2014). GCPs are points of 

known ground coordinates that facilitate georeferencing. Additional tie points identified by the 

software support the process. In a next step, exterior image orientation is estimated based on known 

interior image orientation. Exterior orientation is defined by X, Y and Z coordinates of the sensor 

and the UAV’s roll, pitch and yaw (Aber et al., 2010). Roll equals the rotation around the X axis, 

pitch equals the rotation around the Y axis and yaw equals the rotation around the Z axis. Interior 

image orientation is defined by focal length, principal point location, three radial and two 

tangential distortion coefficients. Finally a bundle adjustment, the orientation of an image block, 

is carried out (Remondino et al., 2014). Difficulties arise during image georeferencing and bundle 

adjustment when image positions differ from those common for classical aerial surveys. Leica LPS 

was initially tested on data acquired for this study but arising problems during data processing led 

to a change to computer vision software. 

Processing with computer vision is usually faster but reduces the user’s control over 

georeferencing and block formation as well as calculated accuracies (Remondino and Kersten, 

Sensor Band Combinations Ground Resolution 

Visual (RGB) Band1: Red 

Band2: Green 

Band3: Blue 

 

 

 

0.7 cm/ pixel at 50 m altitude 
Multispectral (BGNIR) Band1: Near Infrared 

Band2: Green 

Band3: Blue 
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2012). Nevertheless, results are competitive with those from the photogrammetric approach (Sona 

et al., 2014). Available software packages include Pix4D Pro (Switzerland), Bundler and Agisoft 

PhotoScan Professional (Agisoft LLC, Russia). Pix4D Pro is chosen because it produces high 

quality results (Doneus et al., 2011; Gini et al., 2013; Neitzel and Klonowski, Sona et al., 2014) 

4.4 Pix4D Processing 

Pix4Dmapper is an image processing software that is based on automatically finding thousands of 

common points between images. The steps followed in Pix4D to process the images captured by 

UAV includes: 

 

Each characteristic point found in an image is called a keypoint. When 2 keypoints on 2 different 

images are found to be the same, they are matched keypoints. Each group of correctly matched 

keypoints will generate one 3D point. When there is high overlap between 2 images, the common 

area captured is larger and more keypoints can be matched together. The more keypoints there are, 

the more accurately 3D points can be computed. 

In cases where the terrain is flat with homogeneous visual content such as agriculture fields, it is 

difficult to extract common characteristic points (keypoints) between the images. In order to 

achieve good results: 

 The overlap between images have been increased to at least 85% frontal overlap and at 

least 70% side overlap. 

 Accurate image geolocation have been provided. The GCPs have helped in increasing the 

accuracy of the image location. 
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4.4.1 Workflow  

Figure 13: The Flight Plan showing Initial 

Image Positions 

Figure 14: Number of overlapping images 

computed for each pixel of the orthomosaic. 

Red and yellow areas indicate low overlap for 

which poor results may be generated. Green areas 

indicate an overlap of over 5 images for every 

pixel. 

 

Images Feature Point 

Detection 

 

Block 

Adjustment 

 

Product 

Generation 

Exterior Orientation 

Interior Orientation 

 

PointCloud 

OrthoPhoto 

DSM 

Figure 12: Image Processing Workflow 
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Ground Control Points 

A Ground Control Point (GCP) is a characteristic point whose coordinates are known. GCPs are 

used to georeference a project and reduce the noise. 3 GCPs is the minimum to geolocate (scale, 

orient, position) a project. Optimal accuracy is usually obtained with 5 - 10 GCPs. The GCP 

report is a part of the quality report and it shows the locational accuracy and the RMSE of the 

orthomosaic. 

Table 4: Geolocation Accuracy 

4.4.3 Deliverables 

 

Orthomosaic 

This is a seamless (continuous) navigable visual Imagery of the project. It is a file that represents 

the full georeferenced image and its associated world file. Each point contains X, Y and colour 

information. The orthomosaic has uniform scale and can be used for 2D measurements (distances, 

areas). 

 

Digital Surface Model 

The DSM (Digital Surface Model) is a 2.5 D model of the mapped area. Each pixel of the raster 

GeoTIFF file and each point of the vector point cloud contain (X, Y, Z) information. They do not 

contain colour information.  By definition, digital surface models (DSMs) represent the spatial 

distribution of terrain attributes. It is a file containing elevation values representing the terrain 

height. Such models are needed for plant height (PH) and plant growth (PG) analysis with 

CSMs.  
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Densified Point Cloud 

The densified point cloud is a set of 3D points that reconstruct the model. The X, Y, Z position 

and the color information is stored for each point of the densified Point Cloud. The densified point 

cloud is computed based on the Automatic Tie Points and it provides a very accurate background 

for distance, surface and volume measurements.  

  

Figure 16: Digital Surface Model Figure 15: Orthomosaic 

 

Figure 17: Point Cloud 
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5. Methodology 

The methodology framed show the several aspects which can be used for yield estimation without 

extensive field work. The above methodology is followed to determine the health of the crop using 

remote sensing techniques on an aerial platform. This demonstrates how this technology can be 

simpler and time-saving as compared to the conventional techniques used for yield estimation and 

subsequent determination of crop insurance for farmers. 

Flow Chart Representation 
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6. Results and Analysis 

6.1 Crop Cover  

This was computed to accurately delineate the vegetated area. This helps in computing the 

percentage of foliage cover per area. The crop cover is an important indicator of stage of growth 

and crop water use in crops. 

Figure 19: September, 2015 

Figure 18: June, 2015 
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From the above images, the increase in the crop cover has been extracted by performing 

unsupervised classification in ArcGIS where the area covered by crops has been determined. The 

crop area was then converted into polygons to determine the exact foliage cover. The total study 

area was 0.13 square kilometres. The foliage cover or the greenness of the vegetation was found 

to increase from 0.0136 square kilometres to 0.0964 square kilometres. 

6.2 Plant Height Estimation 

Obtaining accurate and timely crop height estimates is important to characterize plants’ growth 

rate and health. Agricultural researchers use this data to measure the impact of genetic variation in 

the crops on drought resistance and responses to environmental stresses. Practitioners also use crop 

height information to assess crop development and plan treatments. These measurements are 

currently obtained through manual measurement, or by driving heavy equipment through the field. 

These collection methods are time consuming and damaging to the crops (i.e. destructive testing), 

and as such, are not regularly used. 

Measuring crop's height requires height estimates of the top of the crop and the ground, the 

difference of which is the crop height. Measuring crops from the air to characterize the top of the 

canopy benefits from unobstructed movement that does not damage the crops, but locating the 

ground is more challenging as layers of plants’ leaves can obscure the ground. 

 Two generic ways adopted to reduce this error is: 

■ One way is to increase sensing power by using, for example, radars or powerful LiDARs.  

■ Alternative way is to fly a low altitude UAV with powerful sensors close to the plants, 

thereby exploiting the gaps in the crop canopy to directly sense the ground and the plants 

with lower heights. 

By operating at low altitude, the system greatly increases the spatial resolution of the collected 

data, when compared to traditional approaches. Furthermore, the small size and weight of the 

system limits the risks of operating the unit. 

In plant modelling, plant height (PH) is defined as the vertical distance from the model’s origin to 

the uppermost point (Lati et al., 2013). For a plant canopy PH equals the difference between bare 
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soil and the canopy top. Plant growth (PG) is defined by the difference in plant height between 

two observation dates. Both PH and PG are variables of interest in precision agriculture 

applications. PH is an important factor in optimizing site specific crop management and harvesting 

processes like crop yield predictions, precise fertilizer application, and pesticide application 

(Ehlert et al., 2009; Lati et al., 2013). Moreover, PH is a key variable in determining yield potential 

(Girma et al., 2005) and in modelling yield losses from lodging(Berry et al., 2003; Chapman et al., 

2014; Confalonieri et al., 2011). Monitoring PG is important since plants undergo intra-annual 

cycles linked to growth and phenology (Atzberger, 2013). 

Spatial coverage increases when PH is derived from 3D point clouds collected by Terrestrial Laser 

Scanning (TLS) (Hoffmeister et al., 2010; Lumme et al., 2008; Tilly et al., 2014) and airborne 

laser scanning (Hunt et al., 2003). Another way to derive such 3D point clouds is using UAV-

based RGB imaging. PG is acquired by repeated measurements with the described methods and 

calculating the difference between observations. When analysing plant canopies, rather PH and 

PG information of a surface is required than point measurements. 

Such information is 

provided within the 

concept of crop surface 

models (CSMs), first 

introduced by (Hoffmeister 

et al., 2010). By definition 

CSMs represent the top of 

the plant canopy at a given 

point in time (Hoffmeister 

et al., 2013). CSMs are 

accurately georeferenced 

and resolution typically 

ranges from 1 m to 0.01 m.  

PG is derived by subtracting 

surfaces at the start and the end of the desired observation period (Bendig et al., 2013). CSM 

Figure 20: Deriving Crop Height by comparing CSM and initial DTM 
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products include PH and PG maps that enable spatial variability detection (Tilly et al., 2014). Point 

clouds for CSM generation are acquired through RS techniques like TLS or UAV RS. The latter 

is described in the following section 

6.2.1 Crop Surface Models 

Generating crop surface models requires:                    

1. Mosaicking of the collected 

images,  

2. Point cloud generation, 

3. Digital Terrain Model 

(DTM) 

4. Digital surface model 

(DSM).  

Here, the DSM represents the crop surface and is referred to as CSM hereafter. It has to be 

subtracted from a ground model (DTM) in order to obtain the Plant Height. The result is a 3D 

reconstruction of the geometry that displays a CSM. For enhanced absolute spatial accuracy, the 

GCPs were imported into Pix4D prior to mosaicking, where they were projected to all images 

automatically after being placed in a single image. We then manually verified and adjusted the 

positions if necessary. Finally, the CSM is exported in *TIF-image format. 

6.2.2 Digital Terrain Model (DTM) 

From the first level outputs generated i.e. the point cloud was further used to generate the Digital 

Terrain Model or the bare earth model. Bentley’s Microstation V8 software was used to generate 

the DTM. The above ground points were classified and removed to derive the bare earth terrain.  

 

 

 

Figure 22: Classification of Above ground Points 

Figure 21: 3D Model of the Cropped Area 
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Figure 23: A cross-section showing the classified ground surface 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: The Digital Terrain Model 
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Figure 25: Crop Surface Model- Jun 

Figure 26: Crop Surface Model- September 
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Further processing was carried out in Microstation V8. The CSM was clipped which form the area 

of interest (AOI). To account for boundary effects, the plots were reduced by 0.3 m on each end, 

and the areas were destructive biomass sampling was performed were excluded. In the next step, 

the CSM is subtracted from the ground model to obtain the PH. The mean PH was calculated for 

each plot and used for the biomass estimation with a regression model. This process is repeated 

for the CSM of each date.  

Figure 27: 3D view Crop Surface Model 

Minus Tool was run in ArcGIS to determine the Plant Height and the height of the plant ranged 

from 5.6 to 8.4 meters.  

6.3 Weed Detection: 

Weed detection is carried out by determining the height or profile of anomalies across plots. Crops 

are generally of uniform heights, so sudden dips or peaks in the profile denote the potential 

presence of weeds. 

The only way to spot weeds is to visually inspect if they are present. For farmers who own large 

fields, this is time consuming–and time is an expensive commodity. The use of a UAV allows for 

the quick and frequent visualization of fields and consequent analysis through anomaly detection 

to immediately identify areas where weeds are prevalent. 

This addresses the problem by: 

(1) Immediately identifying weeded areas and  

(2) Allowing the farmer to act in a targeted manner. 
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The peaks or the anomalies in the above cross section of the Digital Surface Model denote the 

presence of weeds. This helps farmers to take appropriate actions to prevent its further growth. 

 

Figure 28: Visual Inspection of Weeds 

Figure 29: Cross Profile denoting the presence of weeds 
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6.4 Vegetation Indices 

Vegetation indices (VIs) are developed to qualitatively and quantitatively evaluate vegetation 

using spectral measurements in relation to agronomic parameters like biomass (Bannari et al., 

1995). Presently, site-specific crop management (SSCM), an important component of precision 

agriculture is being pursued vigorously to increase production.  

6.4.1 Enhanced Normalised Difference Vegetation Index:  

ENDVI differs from the earlier NDVI calculations as it uses blue/green visible light instead of the 

red-only method.  This allows for better isolation of plant health indicators and produces a False 

Colour Mapping to indicate the value of Vegetation Index at that pixel. 

ENDVI includes a comparison of Green light in addition to NIR, Red, and Blue in order to give a 

more sensitive result. This isolates the indicators of plant health, and can be used to assess the 

presence and health of a crop. 

ENDVI = 
BlueGreenNIR

BlueGreenNIR

*2)(

*2)(




 

Figure 30: ENDVI - June, 2015 

http://www.maxmax.com/endvi.htm
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ENDVI was estimated on the images captured on June and September, which acted as a strong 

indicator of plant health as seen from the higher index value of 0.52 in September as compared to 

the value of 0.38 in the month of June. 

6.4.2 Green Normalised Difference Vegetation Index:  

This index is similar to NDVI except that it measures the green spectrum from 540 to 570 nm 

instead of the red spectrum. This index is more sensitive to chlorophyll concentration than 

NDVI.  

GNDVI = 
)(

)(

GreenNIR

GreenNIR




 

From the images below, the abundance of chlorophyll content in September image is clearly 

visible as compared to the June image. This index is an excellent indicator of the plant growth 

and its health status. The index value increases to 509 from a value of 154 in June. 

Figure 31: ENDVI - September, 2015 
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Figure 32: GNDVI- June, 2015 

Figure 33: GNDVI: September, 2015 
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6.5 Field Health Report 

The plot-level zonal statistics of the September, 2015 was computed since this month was found 

to be the yield peak month. The vegetation indices ENDVI and GNDVI act as an excellent 

indicator of the plant health and vigour. The study area was broken down into 5*5 m grids and the 

maximum, minimum, mean and standard deviation for each plot was computed. 

            

Figure 34: Field Health Status based on Indices 

From the above maps one can clearly determine the areas which requires immediate attention. 

Computing both the indices helped us to further distinguish between the healthy and unhealthy 

crop conditions.  

Whole field, in-season current condition data is considered to be a valuable piece of information 

in a precision program. This field health reports distinguish healthy areas from those that require 

attention, thus enabling farmers to see where to make timely adjustments during the growing 
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season. The report helps in identifying areas compromised by hailstorms, blights, insects and other 

pests in time to treat those areas and increase yields or to deprioritize them for the season. 

6.6. Correlating Indices with In-situ Yield Values: 

The purpose of this study was to show that a model can be constructed based on GNDVI and 

ENDVI that would allow us to predict corn yield using the multi-spectral images from our aerial 

survey. This would be a result similar to the data that has been acquired in-situ corn yield. The 

yields and average GNDVI scores from 12 locations in the field of the survey area are taken for 

the purpose of generating a correlation.  

 

 

 

 

 

  

 

 

 

 

 

 

 

Table 5: The In-situ Yield and the Indices Value for the 12 sample locations 

Serial 

No. 
Yield (in 

Bushels) 

ENDVI GNDVI 

1 0.1688 0.25100 156.692 

2 0.2027 0.31120 315.583 

3 0.1677 0.24555 174.694 

4 0.0576 0.16522 344.513 

5 0.1388 0.23894 139.739 

6 0.1148 0.19041 396.431 

7 0.1368 0.22602 376.504 

8 0.1235 0.23129 361.460 

9 0.1988 0.32948 229.686 

10 0.1767 0.25127 370.528 

11 0.1496 0.23435 133.660 

12 0.1221 0.22222 373.504 
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The results from the correlation can be used to make a predictive model of yield based on the 

average GNDVI and ENDVI score. By fitting a logarithmic curve to the data as shown in Figure 

we create a yield model where the coefficient of determination was found to be 0.7762 and 0.8499. 

Therefore a strong positive relationship was established between the sample yield data collected 

on the field and the indices computed.  

6.7 Yield Estimation 

Biomass as a productivity parameter of crop can be used as an effective tool for forecasting yield 

capacity. We can obtain area distribution of this parameter using aerial data or satellite 

y = 0.7787x - 0.0415

R² = 0.7762
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Figure 35: Correlation between In-situ yield and GNDVI Values 

Figure 36: Correlation between In-situ yield and ENDVI values 
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measurements. Obtained data of biomass can be used as an input parameter in crop growth model 

and also directly used for forecasting the yield capacity of field, taking into account correlation 

between crop yield and biomass. 

Assessing the dry matter amount from standing biomass on fields is methodologically difficult, as 

it involves manual sampling and measuring the total biomass as well as the dry matter content. In 

addition most fields show spatial heterogeneity of their growth conditions and thus varying yield 

levels within fields. 

Crop biomass can be estimated with different techniques. Reflectance measurements base on the 

instantaneous relationship between spectral reflectance and biomass (Baret et al., 1989). VIs are 

derived from reflectance data and thus VIs are suitable for crop biomass estimation. Several studies 

demonstrate the relationship of different vegetation indices (VIs) and biomass on various spatial 

scales (Gitelson et al., 2003; Heiskanen, 2006; Le Maire et al., 2008). 

The yield of the crop was estimated using 

the correlation found out between the 

sample in-situ yield data and the GNDVI 

Index. GNDVI was chosen since it had a 

higher positive regression value of 0.8499. 

Using the equation of the straight line i.e. 

y = 0.0003x + 0.0398, a yield map was 

prepared and the zonal statistics of the 

same 8 locations were computed to show 

that difference between the actual yield 

and the computed figures. 

 

 

 Figure 37: Yield Estimated Map 
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Table 6: Comparison between In-situ Yield Data and Estimated Yield Data 

From the above table it can be seen there is a slight difference from the actual in-situ yield data 

and the values computed from the study. Therefore this can be used as an effective way to 

determine the crop yield rather than using the traditional crop cutting experiment techniques 

6.8 Comparison with Conventional Technology 

The conventional technology used for yield estimation is generally through Crop Cutting 

Experiments. The major loopholes in the technique are: 

Serial 

No. 

Estimated Yield Values (in 

Bushels) 

In-Situ Yield  Data (in Bushels) 

1 0.0868075 0.1088 

2 0.1344750 0.1227 

3 0.0922082 0.1677 

4 0.1431540 0.1576 

5 0.0817216 0.1388 

6 0.1587290 0.1148 

7 0.1527510 0.1368 

8 0.1482380 0.1235 

9 0.1087060 0.1188 

10 0.1509580 0.1767 

11 0.0798980 0.1096 

12 0.1518510 0.1221 
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 One or more plots are chosen as samples from commercial fields.  

 Not possible to estimate the yield in an individual field with acceptable statistical precision. 

 At times, Eye estimates of yield per acre are made for many fields and a random subsample 

of fields for crop cutting is taken. 

 

 

Figure 38: Selection of Plots for Crop Cutting Experiments 

 

Yield Estimation through remote sensing has a major advantage. It saves time. When yield of a 

much larger area can be generated using the various vegetation indices and a few sample in-situ 

data, the tedious field work carried out for estimating the yield can be avoided. Moreover, 

inconsistency of the data can also be prevented. 
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6.9 Crop Insurance Computation: 

For, the purpose of the study, we have chosen the most commonly used technique. Multiple Peril 

Crop Insurance (MPCI) is a broadbased crop insurance program. Crops eligible for MPCI coverage 

in Iowa include corn, soybeans, oats, wheat, seed corn, popcorn, barley, potatoes, sweet corn, 

canning beans, dry beans, forages, grain sorghum, green peas, tomatoes, and nursery stocks. There 

are two decisions that determine the amount of protection obtained from MPCI:  

 the level of yield coverage chosen  

 the level of price coverage chosen  

Indemnity Payments: If your actual average yield (adjusted for quality) is equal to or greater than 

the yield guarantee, no indemnity is paid. If the average yield per acre is less that the yield 

guarantee, the indemnity paid is equal to the yield difference times the indemnity price, times the 

number of acres insured. 

Actual Production History yield is computed as a simple average of from four to ten consecutive 

years of actual yields based on your production records. If you cannot prove four consecutive years 

of yields, “T yields” will be substituted for the missing years. The T yields vary by county, and 

are equal to the most recent 10-year county average yield. If only one year of the four is missing, 

the T yield is used for the missing year. However, if two or more years are missing, you can use 

only a percentage of the T yield, as shown below.  

 1 year missing - use 100 percent of T yield  

 2 years missing - use 90 percent of T yield  

 3 years missing - use 80 percent of T yield  

 4 years missing - use 65 percent of T yield 

So, The APH for Perth County was computed from its past 10-year yield data and the 

observation were as follows: 
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Table 7: Yield Values of Perth County for 3 consecutive years                 Table 8: Computation of APH  

 

Based on the APH the farmers could insure its crops. The insurance yield is based on your actual 

production history (APH), which is an estimate of your average yield on the insured unit for four 

to ten consecutive years. One can insure its crop at from 50 to 85 percent of your APH yield, in 

increments of 5 percent. The yield guarantee per acre is equal to your APH insurance yield 

multiplied by the level of coverage one chooses. 

This method however faces a major limitation. The yield is calculated as an average for the entire 

county rather than individual fields. Therefore, with the help of remotely sensed data and the 

outputs generated from this study can help insurance companies to decide the exact amount of 

insurance that should be provided to the farmers for their own plot of land since the yield values 

are likely to vary from farm to farm. By monitoring a crop throughout its growing season, 

insurance companies can also avoid a lot of faulty payments by identifying the anomalies and 

weeds during the growing season itself.  They can suggest corrective measures than can be used 

by farmers for a perfect healthy crop growth. 

Year Yield(Bushel/ Acre) 

2011 160.5 

2012 166.4 

2013 165.6 

2014 (T Yield*100)155 

APH 161.875 

Year Yield(Bushel/ Acre) 

2011 160.5 

2012 166.4 

2013 165.6 

2014 -- 

T Yield 155.1363636 
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7. Conclusion 

There is much ado about the potential for applications of UAVs to take precision agriculture to the 

next level. The economic value of UAVs to agriculture has been broadly touted with little basis 

for the estimates. UAVs have been particularly important for crop monitoring during the early part 

of the growing season, when cloud cover may prevent satellite data acquisition. Using the UAV 

data, the yield of the crops can be precisely determined which could help farmers and policy 

makers in taking appropriate decisions. Moreover, it has also been found out that it significantly a 

better method than the conventional crop cutting experiment technique.  

Therefore, to conclude crop insurance is a major prospect where UAV data can be utilized. Studies 

have found out more than 50% of a farmer’s yield gap is due to weather conditions. There are a 

number of ways that drones are predicted to enhance efficiency of initial insurance surveys, from 

basic visual damage assessment to increased operational tempo.   After the study concluded, there 

was two main findings:                  

1. Drones provide estimated yield increase    

Assumption: Current crop yields are not achieving their maximum potential. Yield is, on average, 

about 20% less than it could be under optimal circumstance.  

Finding: Study estimates that drones can reduce the management yield gap by up to 25%   

2. Drones provide input savings                                                                                      

Assumption: Farmers tend to over-apply resources  

Finding: Drones provide information that enhances variable rate technology, reducing input cost. 

Study estimates there is a 5% additional input saving by using the information collected by a drone. 
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Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Yield Values of Perth County, Ontario, Canada 

 

 

 

 

 

 

Year Area Seeded 

(acres) 

Area Harvested 

(acres) 

Yield(bushels/acre) 

2004 104,900 104,900 127 

2005 97,500 95,800 158 

2006 108,765 105,800 161 

2007 150,000 146,800 145 

2008 100,000 99,300 156 

2009 110,000 109,000 139 

2010 115,000 113,700 170 

2011 126,591 121,421 160.5 

2012 114,567 104,857 166.4 

2013 118,356 116,990 165.6 

2014 95,949 94,900 158.0 
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Annexure 

 


