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PREFACE 

 

Classification of remotely sensed data has been widely used to generate thematic Land-Use 

Land-Cover (LULC) inventories for a range of applications including urban planning, 

agricultural crop characterization, and forest ecosystem classification. In response, a number 

of different classification approaches have been developed to accomplish such tasks. Most 

notable have been classification approaches based on Artificial Neural Networks (ANNs). 

ANNs were originally designed as pattern-recognition and data analysis tools that mimic the 

neural storage and analytical operations of the brain. ANN approaches have a distinct 

advantage over statistical classification methods in that they are non-parametric and require 

little or no a priori knowledge of the distribution model of input data. Additional superior 

advantages of ANNs include parallel computation, the ability to estimate the non-linear 

relationship between the input data and desired outputs, and fast generalization capability. 

Many previous studies on the classification of images have confirmed that ANNs perform 

better than traditional classification methods in terms of classification accuracy, such as 

maximum likelihood classifiers. 

Thus, this paper will focus on applying neural network machine learning methods to UAV 

acquired images for the purpose of automatic detection and classification. The aim is to 

formulate a tool which will produce LULC maps with marginal errors. 
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INTRODUCTION 

With large number of data sources coming into picture today, we have been blessed with a 

rich and varied repository for almost every part of the Earth. However, due to its surmounting 

quantity and size, we may sometimes be unable to smartly process and utilize them. Land use 

Land cover (LULC) Classification is one such output which we have not been able to 

automatically produce yet. Hence, the need for an innovative tool that can enable us to do so. 

1.01 Need for a Solution 

At large, it has been seen, that most organizations perform and produce Land Use Land 

Cover (LULC) maps manually. Although manual classification is considered more efficient 

as compared to machine classification due to the ability of humans for superior pattern 

recognition and categorization (Prasad S. Thenkabail, 2015), it surely could pose some 

serious drawbacks, namely: 

 Time consuming: At a time where everything is fast paced and there is a demand for 

good quality at a reasonable time, classifying data manually can be very time 

consuming. 

 No guarantee of reproducibility: Since manual classification relies largely on the 

interpretability of an individual, it may vary from person to person, providing no 

assurance of 100% similarity in classifying standards. 

 More losses than gains: Although manual classification can be cost effective, in 

cases where classification standards vary from one dataset to another, redoing them 

again and again will not only prove to be a waste of time but also could incur losses 

for that organization (Management Association, 2013). 

By training a machine to classify datasets, we will not only be able to achieve uniformity, but 

will also be able to save time and assure reproducibility, hence, increasing efficiency to a 

great extent. Artificial Neural Network will help us to do just that. 

1.02 Objective 

The basic objective of this project is to instill the essence of “Smart Processing” rather than 

labor-intensive, grueling work. This tool aims to cater to the needs of many for reducing 

manual work and classifying datasets in comparatively shorter period of time, whereby also 

providing uniformity and a certain amount of reliability.  
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1.03 About Artificial Neural Network 

Artificial neural networks (ANNs) are a family of models inspired by biological neural 

networks (the central nervous systems of animals, in particular the brain) and are used to 

estimate or approximate functions that can depend on a large number of inputs and are 

generally unknown. Artificial neural networks are generally presented as systems of 

interconnected "neurons" which exchange messages between each other. The connections 

have numeric weights that can be tuned based on experience, making neural nets adaptive to 

inputs and capable of learning (Wikipedia, Artificial neural network). 

1.04 Usefulness and Capabilities 

 Exploits non- linearity: It can help in solving non-linear problems, unlike the single 

layer perceptron. 

 Input/output mapping: Its learning ability sets it apart from other computational 

techniques. 

 Adaptivity: It can adapt free parameters to its surroundings. In terms of humans, the 

free parameters could refer to the synapses. 

 Evidential response: It takes decisions with a measure of confidence. 

 Fault tolerance: Since a large number of neurons are involved, the failure of one 

does not result in the failure of the complete system. Thus, it exhibits graceful 

degradation. 

 VLSI Implementation: It features VLSI (Very Large Scale Implementation) 

qualities. 

 Neurobiological Analogy: It is motivated by human analogy. 

Thus, with these advantages in hand, we hope to build a Python tool in QGIS which will, to 

an extent, automate the Land use Land cover classification procedures, keeping in mind the 

importance of accuracy and time. 
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LITERATURE REVIEW 

2.01 Machine Learning Through the Ages 

“Those who cannot remember the past are condemned to repeat it.” 

- George Santayana (Santayana, 1905-1906) 

The development of machine learning is an integral part of the development of artificial 

intelligence. In the early days of AI, people were interested in building machines that mimic 

human brains. The perceptron model was invented in 1957, and it generated over optimistic 

view for AI during 1960s. After Marvin Minsky pointed out the limitation of this model in 

expressing complex functions, researchers stopped pursuing this model for the next decade.  

Figure 01: Machine Learning: Time Line (Hu, 2013) 

 

In 1970s, the machine learning field was dormant, when expert systems became the 

mainstream approach in AI.  The revival of machine learning came in mid-1980s, when the 

decision tree model was invented and distributed as software. The model can be viewed by a 

human and is easy to explain. It is also very versatile and can adapt to widely different 

problems. It is also in mid 1980s multi-layer neural networks were invented, with enough 

hidden layers; a neural network can express any function, thus overcoming the limitation of 

perceptron. We see a revival of the neural network study. 
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Both decisions trees and neural networks see wide application in financial applications such 

as loan approval, fraud detection and portfolio management. They are also applied to a wide-

range of industrial process and postal office automation (address recognition).  

Machine learning saw rapid growth in 1990s, due to the invention of World-Wide-Web and 

large data gathered on the Internet. The fast interaction on the Intern called for more 

automation and more adaptivity in computer systems. Around 1995, SVM was proposed and 

have become quickly adopted. SVM packages like libSVM, SVM light make it a popular 

method to use.  

After the year 2000, Logistic regression was rediscovered and re-designed for large scale 

machine learning problems. In the ten years following 2003, logistic regression has attracted 

a lot of research work and has become a practical algorithm in many large-scale commercial 

systems, particularly in large Internet companies (Hu, 2013).   

2.02 History of Neural Networks 

The study of the human brain is thousands of years old. With the advent of modern 

electronics, it was only natural to try to harness this thinking process. The first step toward 

artificial neural networks came in 1943 when Warren McCulloch, a neurophysiologist, and 

a young mathematician, Walter Pitts, wrote a paper on how neurons might work. They 

modeled a simple neural network with electrical circuits. 

Reinforcing this concept of neurons and how they work was a book written by Donald Hebb. 

The Organization of Behavior was written in 1949. It pointed out that neural pathways are 

strengthened each time that they are used (Artificial Neural Networks Technology). 

W.S. McCulloch, W. Pitts described the first Neural Network Model and F. Rosenblatt 

(Perceptron) and B. Widrow (Adaline) developed the first training algorithm (J. Vieira, 

1997).  

A neural network is a massively parallel distributed processor that has a natural propensity 

for storing experiential knowledge and making it available for use. It resembles the brain in 

two respects (Haykin, 1994). Firstly, knowledge is acquired by the network through a 

learning process and secondly, interneuron connection strengths known as synaptic weights 
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are used to store the knowledge. Artificial neural systems, or neural networks, are physical 

cellular systems which can acquire, store, and utilize experiential knowledge (Zurada, 1992).  

2.03 Analogy Between Human and Artificial Neural Nets 

Artificial neural nets were originally designed to model in some small way, the functionality 

of the biological neural networks, which are a part of the human brain. Our brains contain 

about 1011neurons. Each biological neuron consists of a cell body, a collection of dendrites 

which bring electrochemical information into the cell and an axon which transmits 

electrochemical information out of the cell.  

Figure 2.02: Analogy between human neurons and artificial nets 

(Vinícius Gonçalves Maltarollo, January 16, 2013) 

(A) Human 

neuron;  

(B) Artificial 

neuron or 

hidden unity;  

(C) 

Biological 

synapse;  

(D) ANN 

synapses. 

 

 

A neuron produces an output along its axon i.e. it fires when the collective effect of its inputs 

reaches a certain threshold. The axon from one neuron can influence the dendrites of another 

neuron across junctions called synapses. Some synapses will generate a positive effect in the 

dendrite, i.e. one which encourages its neuron to fire, and others will produce a negative 

effect, i.e. one which discourages the neuron from firing. A single neuron receives inputs 

from perhaps 105synapses. It is still not clear exactly how our brains learn and remember but 

it appears to be associated with the interconnections between the neurons (i.e. at the 

synapses).  
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Artificial neural nets try to model this low level functionality of the brain. This contrasts with 

high level symbolic reasoning in artificial intelligence which tries to model the high level 

reasoning processes of the brain. When we think, we are conscious of manipulating concepts 

to which we attach names (or symbols) e.g. for people or objects. We are not conscious of the 

low level electrochemical processes which are going on underneath. The argument for the 

neural net approach to AI is that, if we can model the low level activities correctly, the high 

level functionality may be produced as an emergent property.  

A single software artificial neuron consists of a processing element which has a number of 

input connections, each with an associated weight, a transfer function which determines the 

output, given the weighted sum of the inputs, and the output connection itself.  

An artificial neural network is a network of interconnected neurons. The network may be 

trained by adjusting the weights associated with the connections in the net to try and obtain 

the required outputs for given inputs from a training set.  

Note that the threshold values and the weights can be adjusted together by adding an extra 

connection to each neuron with an input value of -1 and a weight representing the threshold. 

The neuron then fires if the sum is greater than zero.  

It can be seen that there is an analogy between biological (human) and artificial neural nets. 

The analogy is summarized below: 

Table 2.01: An Analogy between Human and Artificial Neurons 

   Human         Artificial 
   Neuron      Processing Element    

   Dendrites   Combining Function   

   Cell Body    Transfer Function    

   Axons          Element Output    

   Synapses       Weights 

However, it should be stressed that the analogy is not a strong one. Biological neurons and 

neuronal activity are far more complex than might be suggested by studying artificial 

neurons. Real neurons do not simply sum the weighted inputs and the dendritic mechanisms 

in biological systems are much more elaborate. Also, real neurons do not stay on until the 

inputs change and the outputs may encode information using complex pulse arrangements 

(Lewis). 
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Today, researchers have progressed to such an extent so as to have built the world’s first 

artificial neuron that is capable of mimicking the function of an organic brain cell- 

including the ability to translate chemical signals into electrical impulses, and communicate 

with other human cells. Richter-Dahlfors and her team have now managed to create an 

artificial neuron that can mimic this function, and they have shown that it can communicate 

chemically with organic brain cells even over large distances (MacDonald, 2015). 

2.04 Neural Network Model 

A neural network is put together by hooking together many of our simple "neurons," so that 

the output of a neuron can be the input of another. For example, here is a small neural 

network: 

In this figure, we 

have used circles 

to denote the 

inputs to the 

network. The 

circles labeled 

"+1" are called 

bias units, and 

correspond to the 

intercept term. The 

leftmost layer of 

the network is 

called the input 

layer, and the 

rightmost layer the output layer (which, in this example, has only one node). The middle 

layer of nodes is called the hidden layer because its values are not observed in the training 

set. We also say that our example neural network has 3 input units (not counting the bias 

unit), 3 hidden units, and 1 output unit (Neural Networks, 2013). 

2.05 Architecture of Artificial Neural Network 

There are two Artificial Neural Network topologies − Feedforward and Feedback. 

Figure 2.03: Network Layers (Neural Networks, 2013) 
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(a) Feedforward ANN: 

In a Feedforward ANN, the connections 

between units do not form cycles. It usually 

produces a response to an input quickly.  

The information flow is unidirectional. A 

unit sends information to other unit from 

which it does not receive any information. 

There are no feedback loops. They are used 

in pattern generation, recognition and 

classification. They have fixed inputs and 

outputs (Tutorials Point). 

(b) Feedback ANN: 

Feedback networks can have signals travelling in both 

directions by introducing loops in the network. Feedback 

networks are very powerful and can get extremely 

complicated. Feedback networks are dynamic; their 'state' is 

changing continuously until they reach an equilibrium point. 

They remain at the equilibrium point until the input changes 

and a new equilibrium needs to be found. Feedback 

architectures are also referred to as interactive or recurrent, 

although the latter term is often used to denote feedback 

connections in single-layer organizations (Christos Stergiou). 

2.06 The Perceptron: The Fundamentals 

The perceptron was first introduced by F. 

Rosenblatt in 1958 (Types of Neural Nets). 

A perceptron is a unit that computes a single 

output from multiple real-valued inputs by 

forming a linear combination according to its 

input weights and then possibly putting the 

Figure 2.04: Feedforward ANN 

Figure 2.05: Feedback ANN 

Figure 2.06: A Perceptron 
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output through some non-linear function called the activation function (Multilayer 

Perceptron in Python, 2014).  

The output of perceptron can be expressed as: 

𝑓(𝑥) = 𝐺(𝑊𝑇𝑥 + 𝑏) 

Where:  

(x) : the input vector;  

(W,b) : the parameters of perceptron;  

(f) : the non-linear function. 

The perceptron is trained (i.e., the weights and threshold values are calculated) based on an 

iterative training phase involving training data. Training data are composed of a list of input 

values and their associated desired output values. In the training phase, the inputs and related 

outputs of the training data are repeatedly submitted to the perceptron.  

The perceptron calculates an output value for each set of input values. If the output of a 

particular training case is labeled 1 when it should be labeled 0, the threshold value (theta) is 

increased by 1, and all weight values associated with inputs of 1 are decreased by 1. The 

opposite is performed if the output of a training case is labeled 0 when it should be labeled 1. 

No changes are made to the threshold value or weights if a particular training case is correctly 

classified (Leverington, 2009). 

The learning process in a perceptron is supervised and the net is able to solve basic logical 

operations like AND or OR. It is also used for pattern classification purposes.  

More complicated logical operations (like the XOR problem) cannot be solved by a 

Perceptron (Types of Neural Nets). 

2.07 Multi-Layer Perceptron (MLP) 

Multilayer Perceptron (MLP) was first introduced by M. Minsky and S. Papert in 1969and 

is classified as a type of Artificial Neural Network: the computation is performed using a set 

of (many) simple unit with weighted connections between them. Furthermore, there are 

learning algorithms to set the values of the weights and the same basic structures (with 

different weight values) are able to perform many tasks (Gales, 2015). 
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It is an extended perceptron and has one or more hidden neuron layers between its input and 

output layers. Due to its extended structure, a Multi-Layer Perceptron is able to solve every 

logical operation, including the XOR problem (Types of Neural Nets).Intermediate layers 

usually have tan hyperbolic (tanh) or the sigmoid function (defined here by a ‘HiddenLayer’ 

class) as activation function. 

The number of hidden layers determines the decision boundaries that can be generated. In 

choosing the number of layers, the following considerations are made: 

 Multi-layer networks are harder to train than single layer networks. 

 A two layer network (one hidden) with sigmoidal activation functions can model any 

decision boundary. 

Two layer networks are most commonly used in pattern recognition (the hidden layer having 

sigmoidal activation functions) (Gales, 2015). 

An MLP can be viewed as a logistic regression classifier where the input is first transformed 

using a learnt non-linear transformation ϕ.  This transformation projects the input data into a 

space where it becomes linearly separable. This intermediate layer is referred to as a hidden 

layer. A single hidden layer is sufficient to make MLPs a universal approximator 

(Multilayer Perceptron, 2016).  

The Model 

a) Single Layer Multilayer Perceptron 

An MLP (Multi Layer Perceptron) with a single hidden layer can be represented graphically 

as follows: 

Formally, a one-hidden-layer MLP is a 

function 

𝑓: 𝑅𝐷 →  𝑅𝐿 

Where D is the size of input vector x 

and L is the size of the output vector 

f(x), such that, in matrix notation: 

Figure 2.07: Single Layer Multilayer Perceptron 
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𝑓(𝑥) = 𝐺(𝑏(2) +  𝑊(2) (𝑠(𝑏(1) + 𝑊(1)𝑥))) 

With bias vectors b(1), b(2); weight matrices W(1), W(2) and activation functions G and s 

(Multilayer Perceptron, 2016). 

b) MLP with Multiple Hidden Layers 

Multi-layer perceptron allow a neural 

network to perform arbitrary mappings. 

A 2-hidden layer neural network is shown in 

the given figure. The aimis to map an input 

vector x into an output y(x). The layersmay 

be described as: 

 Input layer: Accepts the data vector 

or pattern; 

 Hidden layers: One or more layers. They accept the output from the previous layer, 

weighs them, and pass through a, normally, non-linear activation function; 

 Output layer: Takes the output from the final hidden layer, weighs them and possibly 

passes through an output non-linearity to produce the target values. 

The MLP and many other neural networks learn using an algorithm called backpropagation. 

With backpropagation, the input data is repeatedly presented to the neural network. With 

each presentation the output of the neural network is compared to the desired output and an 

error is computed. This error is then fed back (backpropagated) to the neural network and 

used to adjust the weights such that the error decreases with each iteration and the neural 

model gets closer and closer to producing the desired output. This process is known as 

"training" (Neural Network, 2016). 

Applications of MLP: 

MLP has been used in a wide area for various applications, all of which can be stratified as 

pattern classification, function approximation or prediction. Pattern classification is the 

configuration of patterns into groups of patterns having the same set of properties. It is well 

Figure 2.08: MLP with Two Hidden Layers 

(Neural Network, 2016) 
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known that MLPs are universal in the sense that they can approximate any continuous non-

linear function arbitrarily well on a compact interval.  

As a result, MLP became popular in order to parameterize nonlinear models and classifiers, 

often leading to improved results compared to classical, (V. Cherkassky, 1998) MLP has 

proved to be a very effective tool for the classification of remote-sensing images. However, 

the training of such a classifier, by using data with very different a priori class probabilities 

(imbalanced data), is very slow.  

It is an effective method which describes a learning technique aimed at speeding up the 

training of a MLP also the classification becomes stable (with respect to initial weights) when 

applied to imbalanced data (L. Bruzzone, 1997). Various efforts are being made in order to 

optimize the fault tolerance of MLP in pattern classification problems. Fault tolerance is a 

frequently cited advantage of ANN. SLP was considerably less fault tolerant than any of the 

MLPs, including one with fewer adjustable weights (M. D. Emmerson, 1993).  

MLP has been applied within the field of air-quality prediction. According to the work of Yi 

and Prybutok, MLP helped in predicting ozone concentration on the surface of an industrial 

area in North America (J. Yi, 1996). Weather forecasting is a difficult task to be undertaken. 

In 1996, Marzban and Stumpf predicted the existence of tornadoes, using MLP. This 

approach outperformed other techniques including discriminant analysis, logistic regression 

and rule based algorithm (Marzban, 1996). MLP was used for many applications such as 

predicting monsoon and rainfall (Ceccatto, 1994), distinguishing clouds and ice or snow in 

Polar Regions (R. M. Welch, 1992), interpret satellite imagery for identifying cyclones, war 

fronts, and weather conditions (Tag, 1992). MLP can act as a useful tool to implement 

various other applications such as: paper currency recognition, the diagnosis of low back pain 

and sciatica, heart disease and cancer, stock market prediction, prediction of daily global 

solar radiation, handwritten character recognition, image classification, object recognition, 

feature extraction and many more (Anil Kumar Goswami, 2014). 

2.08 The Perceptron Learning Algorithm 

A learning algorithm is an adaptive method by which a network of computing units self-

organizes to implement the desired behavior. This is done in some learning algorithms by 

presenting some examples of the desired input-output mapping to the network. A correction 

step is executed iteratively until the network learns to produce the desired response. The 
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learning algorithm is a closed loop of presentation of examples and of corrections to the 

network parameters, as shown below: 

In some simple cases, the weights 

for the computing units can be 

found through a sequential test of 

stochastically generated numerical 

combinations. However, such 

algorithms which look blindly for a 

solution do not qualify as 

“learning”. A learning algorithm 

must adapt the network parameters 

according to previous experience 

until a solution is found, if it exists 

(Rojas, 1996). 

2.09 Artificial Neural Networks and Gradient Descent Algorithm 

Global and Local Minimum 

The global minimum is a 

theoretical solution with the 

lowest possible error. The error 

surface itself is a 

hyperparaboloid but is seldom 

'smooth' as is depicted in the 

given figure. Indeed, in most 

problems, the solution space is 

quite irregular with numerous 

'pits' and 'hills' which may 

cause the network to settle 

down in a 'local minimum' 

which is not the best overall 

solution. 

Figure 2.09: Learning process in a parametric system (Rojas, 

1996) 

(Rojas, 1996) 

 

Figure 2.10: Global Minimum 
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Since the nature of the error space cannot be known a priori, neural network analysis often 

requires a large number of individual runs to determine the best solution. Most learning rules 

have built-in mathematical terms to assist in this process which control the 'speed' (Beta-

coefficient) and the 'momentum' of the learning. The speed of learning is actually the rate of 

convergence between the current solution and the global minimum. Momentum helps the 

network to overcome obstacles (local minima) in the error surface and settle down at or near 

the global minimum. 

 

Gradient Descent Algorithm 

Gradient descent is a first-order 

optimization algorithm. To find a 

local minimum of a function using 

gradient descent, one takes steps 

proportional to the negative of the 

gradient (or of the approximate 

gradient) of the function at the current 

point. If instead one takes steps 

proportional to the positive of the 

gradient, one approaches a local 

maximum of that function; the 

procedure is then known as gradient ascent. 

Gradient descent is based on the observation that if the multi-variable function F(x) is defined 

and differentiable in a neighborhood of a point a, then 𝐹(𝑥)decreases fastest if one goes from 

a in the direction of the negative gradient of 𝐹at a, −∇𝐹(𝑎). It follows that, if 

𝑏 = 𝑎 −  𝛾∇𝐹(𝑎) 

If γ is small enough, then 𝐹(𝑎) ≥ 𝐹(𝑏). In other words, the term 𝛾∇𝐹(𝑎) is subtracted from 

𝑎because we want to move against the gradient, namely down toward the minimum. With 

this observation in mind, one starts with a guess 𝑥0for a local minimum of F, and considers 

the sequence𝑥0, 𝑥1, 𝑥2, … such that: 

𝑋𝑛+1 =  𝑥𝑛 −  𝛾𝑛∇𝐹(𝑥𝑛, 𝑛) ≥ 0, 

Figure 2.11: Local and Global Maxima and Minima 

(Wikipedia, Maxima and Minima, 2016) 

Local and global maxima and minima for cos(3πx)/x, 

0.1≤ x ≤1.1 
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We have: 

𝐹(𝑥0)  ≥  𝐹(𝑥1)  ≥  𝐹(𝑥2) ≥ ⋯, 

So hopefully the sequence (xn) converges to the desired local minimum. Note that the value 

of the step size γ is allowed to change at every iteration. With certain assumptions on the 

function F (for example, F convex and ▼F Lipschitz) and particular choices of γ (e.g., 

chosen via a line search that satisfies the Wolfe conditions), convergence to a local minimum 

can be guaranteed. When the function F is convex, all local minima are also global minima, 

so in this case gradient descent can converge to the global solution. 

This process is illustrated in the figure to the right. Here 

F is assumed to be defined on the plane, and that its 

graph has a bowl shape. The blue curves are the contour 

lines, that is, the regions on which the value of F is 

constant. A red arrow originating at a point shows the 

direction of the negative gradient at that point. Note that 

the (negative) gradient at a point is orthogonal to the 

contour line going through that point. We see that 

gradient descent leads us to the bottom of the bowl, that 

is, to the point where the value of the function F is 

minimal (Gradient descent, 2016). 

2.10 Non Linear Activation Functions 

The operation of an artificial neural network is to sum up the product of the associated weight 

and the input signal and produce an output or activation function. For the input unit this 

activation function is the identity function. The neuron of a particular layer gets the same type 

of activation function. In almost all cases, non-linear activation functions are used 

(K.Vijayarekha).  

Some of the activation functions commonly used for neurons is given below:   

 

 

 

Figure 2.12: Illustration of Gradient 

Descent (Gradient descent, 2016) 
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Sigmoid function 

Sometimes S shaped functions called Sigmoid 

functions or Logistic functions are used as 

activation functions which are found useful. 

Logistic and hyperbolic tangent functions are 

commonly used sigmoid functions. The sigmoid 

functions are extensively used in back 

propagation neural networks because it reduces 

the burden of complication involved during 

training phase (K.Vijayarekha). 

Tan Hyperbolic Function 

Though the logistic sigmoid has a 

nice biological interpretation, it turns 

out that the logistic sigmoid can cause 

a neural network to get “stuck” during 

training. This is due in part to the fact 

that if a strongly-negative input is 

provided to the logistic sigmoid, it 

outputs values very near zero. 

Since neural networks use the feed-

forward activations to calculate parameter gradients, this can result in model parameters that 

are updated less regularly than we would like, and are thus “stuck” in their current state. 

An alternative to the logistic sigmoid is the hyperbolic tangent, or tanh function: 

𝜕 tanh(𝑧) =
sinh(𝑧)

cosh(𝑧)
, 

             = 
𝑒𝑧− 𝑒−𝑧

𝑒𝑧+ 𝑒−𝑧 

Like the logistic sigmoid, the tanh function is also sigmoidal (“s”-shaped), but instead outputs 

values that range (-1, 1). Thus, strongly negative inputs to the tanh will map to negative 

outputs. Additionally, only zero-valued inputs are mapped to near-zero outputs. These 

properties make the network less likely to get “stuck” during training (Stansbury, 2016). 

Figure 2.13: Sigmoid Function (Weisstein, Sigmoid 

Function, 2016) 

Figure 2.14: Graphical Representation of the Tan Hyperbolic 

Function (Weisstein, Hyperbolic Tangent, 2016) 
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2.11 Learning Strategies in Neural Network 

ANNs are capable of learning and they need to be trained. There are several learning 

strategies: 

 Supervised Learning: It involves a teacher that is scholar than the ANN itself. For 

example, the teacher feeds some example data about which the teacher already knows 

the answers. 

 Unsupervised Learning: It is required when there is no example data set with known 

answers. For example, searching for a hidden pattern. In this case, clustering i.e. 

dividing a set of elements into groups according to some unknown pattern is carried 

out based on the existing data sets present. 

 Reinforcement Learning: This strategy built on observation. The ANN makes a 

decision by observing its environment. If the observation is negative, the network 

adjusts its weights to be able to make a different required decision the next time. 

2.12 Learning Mechanisms in NN 

There are five basic learning mechanisms in Neural Network:  

1. Error Correction 

Learning 

In this mechanism, the learning 

takes place by iteratively finding 

out the error and consistently 

adjusting the weights such that at 

the last iteration, the error is zero. It 

includes a step-by-step adjustment 

until system reaches steady state 

and the synaptic weights are 

stabilized. 

Thus, at time step ‘n’, the 

difference between the desired 

output via input ‘k’ (dk) and the 

Figure 2.15: Illustration of Error Correction Learning 

(Bennamoun) 
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actual output 𝑦𝑘(𝑛) will result in the error (𝑒𝑘): 

𝑒𝑘(𝑛) =  𝑑𝑘(𝑛) −  𝑦𝑘(𝑛) 

The cost function′𝐸(𝑛)′or the ‘Index of Performance’ can be formulated using:  

𝐸(𝑛) =  1
2⁄ ∑ 𝑒2(𝑛) 

Minimization of this error can be done using the ‘Widrow-Hoff Rule’ or ‘Delta Rule’. 

∆𝑊𝑘𝑗(𝑛) =  Ƞ𝑒𝑘(𝑛). 𝑥𝑗(𝑛) 

Where: 

Ƞ is the learning rate. 

Thus, after correction, the formula for the updated synaptic weight will be as follows: 

𝑊𝑘𝑗(𝑛 + 1) =  𝑊𝑘𝑗(𝑛) +  ∆𝑊𝑘𝑗(𝑛) 

Here the adjustment is proportional to the product of error signal and the input signalerror-

correction learning is local. It is the learning rate η that determines the stability or the 

convergence. 

 

2. Memory Based Learning 

In memory-based learning, all (or most) of the past experiences are explicitly stored in a large 

memory of correctly classified input-output examples: 

{(𝑥𝑖, 𝑑𝑖)}𝑖=1
𝑁  

Where xi denotes an input vector and didenotes the corresponding desired response. When 

classification of a test vector xtest (not seen before) is required, the algorithm responds by 

retrieving and analyzing the training data in a “local neighborhood” of xtest. 

 

All memory-based learning algorithms involve 2 essential Ingredient (which make them 

different from each other): 
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 Criterion used for defining local neighbor of xtest. 

 Learning rule applied to the training examples in local neighborhood of xtest. 

Nearest Neighbor Rule (NNR): When we feed a new vector  �⃑�𝑡𝑒𝑠𝑡 , it finds, from the 

memory, which of these memories is going to be the closest to the new vector. The Euclidean 

distance is found from �⃑�𝑡𝑒𝑠𝑡 and each �⃑�𝑖. The vector 𝑿𝑁
′ ∈  {𝑿0, 𝑿1, 𝑿2, … , 𝑿𝑁} is the nearest 

neighbor of 𝑿𝑡𝑒𝑠𝑡 if: 

𝑚𝑖𝑛𝑖𝑑(�⃑�𝑖, �⃑�𝑡𝑒𝑠𝑡) =  𝑑(�⃑�𝑁, �⃑�𝑡𝑒𝑠𝑡) 

Where 𝑿𝑁
′  is the class of 𝑿𝑡𝑒𝑠𝑡. The corresponding d is going to be the response for �⃑�𝑡𝑒𝑠𝑡 

(Bennamoun). 

k-Nearest Neighbor Rule: It is a variant of the Nearest Neighbor Rule and identifies the k 

classified patterns that lay nearest to �⃑�𝑡𝑒𝑠𝑡 for some integer k. Also, �⃑�𝑡𝑒𝑠𝑡is assignedto the 

class that is most frequently represented in the k nearest neighbors to �⃑�𝑡𝑒𝑠𝑡. 

Let us assume some patterns to be ‘0’ and ‘1’. Thus after arranging these patterns we gain the 

following graph: 

In the given graph, we see the distribution of patterns 

‘0’ and ‘1’. There is a test pattern (marked in red) 

present which has to be classified. Ideally this test 

pattern should be classified as ‘0’. However, due to 

the presence of an ‘outlier’(in this case pattern ‘1’, 

lying closest to the test pattern), the test pattern will 

be classified as belonging to pattern ‘1’ which will 

lead to faulty classification . 

To overcome this flaw, the k-Nearest Neighborhood 

rule is used where not only the nearest neighbor but the nearest neighborhood is identified. 

 

3. Hebbian Learning 

According to Hebb, “When an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes place in firing it, some growth process or metabolic 

change takes place in one or both cells such that A’s efficiency, as one of the cells firing 

B, is increased” (Hebb, 1949). 

Figure 2.16: Outliers: Cause of Faulty 

Classification 
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In other words: 

1. If two neurons on either side of a synapse (connection) are activated 

simultaneously (i.e. synchronously), then the strength of that synapse is 

selectively increased. 

2. If two neurons on either side of a synapse are activated asynchronously, then that synapse 

is selectively weakened or eliminated so that chance coincidences do not build up 

connection strengths. 

Thus, if the cross product of output and input (or correlation) is positive, it results in an 

increase of the weight, otherwise the weight decreases. It can be seen that the outputis 

strengthened in turn for each input presented. 

The Hebbian synapse is characterized by the following characteristics:  

 Time dependent: 

o Depend on exact time of occurrence of two signals 

 Local: 

o Locally available information is used 

 Interactive mechanism: 

o Learning is done by two signal interaction 

 Conjunctional or correlational mechanism: 

o Co-occurrence of two signals 

Hebbian learning is found in Hippocampus of the human brain. 

4. Competitive Learning: 

This is an unsupervised network training and is applicable for an ensemble of neurons (e.g. 

a layer of p neurons), not for a single neuron. In this type of learning, the output neurons of 

NN compete to become active. Only a single neuron is active at any one time. Neurons learn 

to specialize on ensembles of similar patterns. Therefore, they become feature detectors. 

Competitive learning is a rule based on the idea that only one neuron from a given iteration in 

a given layer will fire at a time. Weights are adjusted such that only one neuron in a layer, for 

instance the output layer, fires. Competitive learning is useful for classification of input 

patterns into a discrete set of output classes. The “winner” of each iteration, element i*, is the 

element whose total weighted input is the largest (Artificial Neural Networks/Competitive 
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Learning, 2013). Using this notation, one example of a competitive learning rule can be 

defined mathematically as: 

𝑤𝑖𝑗[𝑛 + 1] =  𝑤𝑖𝑗[𝑛] +  ∆𝑤𝑖𝑗[𝑛] 

∆𝑤_𝑖𝑗 = (
Ƞ(𝑥_𝑖 −  𝑤_𝑖𝑗) 𝑖𝑓 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
) 

Competitive learning takes place in a context of sets of hierarchically layered units. Units are 

represented in the diagram as dots. Units may be active or inactive. Active units are 

represented by filled dots, inactive ones by open dots. In general, a unit in a given layer can 

receive inputs from all of the units in the next lower layer and can project outputs to all of the 

units in the next higher 

layer. Connections between 

layers are excitatory and 

connections within layers 

are inhibitory. Each layer 

consists of a set of clusters 

of mutually inhibitory units. 

The units within a cluster 

inhibit one another in such a 

way that only one unit per 

cluster may be active. We 

think of the configuration of 

active units on any given 

layer as representing the 

input pattern for the next 

higher level. There can be an 

arbitrary number of such 

layers. A given cluster 

contains a fixed number of 

units, but different clusters 

can have different numbers of units (Zipser, 1985). 

There are many variants to the basic competitive learning model. Von der Malsburg (von 

der Malsburg, 1973), Fukushima (Fukushima, 1975), and Grossberg (Grossberg, 1976) 

Figure 2.17:  Architecture of the competitive learning mechanism 

(Zipser, 1985). 
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among others, have developed competitive learning models. In this section we describe the 

simplest of the many variations. The version we describe was first proposed by 

Grossberg (Grossberg, 1976) and is the one studied by Rumelhart and Zipser. This version 

of competitive learning has the following properties:  

 The units in a given layer are broken into several sets of non-overlapping clusters. 

Each unit within a cluster inhibits every other unit within a cluster. Within each 

cluster, the unit receiving the largest input achieves its maximum value while all other 

units in the cluster are pushed to their minimum value. We have arbitrarily set the 

maximum value to 1 and the minimum value to 0.  

 Every unit in every cluster receives inputs from all members of the same set of input 

units.  

 A unit learns if and only if it wins the competition with other units in its cluster. The 

winner that wins the competition is called “winner-takes-all”. 

 A stimulus pattern Sj consists of a binary pattern in which each element of the pattern 

is either active or inactive. An active element is assigned the value 1 and an inactive 

element is assigned the value 0.  

 Each unit has a fixed amount of weight (all weights are positive) that is distributed 

among its input lines. The weight on the line connecting to unit i on the upper layer 

from unit j on the lower layer is designated wij. The fixed total amount of weight for 

unit j is designated ∑jwij = 1. A unit learns by shifting weight from its inactive to its 

active input lines. If a unit does not respond to a particular pattern, no learning takes 

place in that unit. If a unit wins the competition, then each of its input lines gives up 

some portion ϵ of its weight and that weight is then distributed equally among the 

active input lines. Mathematically, this learning rule can be stated  

∆𝑤𝑖𝑗 =  (

0 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑙𝑜𝑠𝑒𝑠 𝑜𝑛 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑘

∈
𝑎𝑐𝑡𝑖𝑣𝑒𝑗𝑘

𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑘
− ∈ 𝑤𝑖𝑗 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑤𝑖𝑛𝑠 𝑜𝑛 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑘

) 

Where activejk is equal to 1 if in stimulus pattern Sk, unit j in the lower layer is active and is 

zero otherwise, and nactivek is the number of active units in pattern Sk (thus,nactivek = 

∑jactivejk) (Competitive Learning). 

5. Boltzmann Learning 
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Boltzmann learning is a stochastic learning algorithm, derived from statistical mechanics. It 

is similar to error-correction learning and is used during supervised training. In this 

algorithm, the state of each individual neuron, in addition to the system output, are taken into 

account. In this respect, the Boltzmann learning rule is significantly slower than the error-

correction learning rule. Neural networks that use Boltzmann learning are called Boltzmann 

machines. 

Boltzmann learning is similar to an error-correction learning rule, in that an error signal is 

used to train the system in each iteration. However, instead of a direct difference between the 

result value and the desired value, we take the difference between the probability 

distributions of the system (Artificial Neural Networks/Boltzmann Learning, 2010). 

The Boltzmann machine is the Neural Network basis of Boltzmann learning. A Boltzmann 

machine is a network of symmetrically connected, neuron-like units that make stochastic 

decisions about whether to be on or off. Boltzmann machines have a simple learning 

algorithm (G. E. Hinton, 1983) that allows them to discover interesting features that represent 

complex regularities in the training data (Hinton, 2007).  

 

A graphical representation of a Boltzmann 

machine with a few weights labeled. Each 

undirected edge represents dependency and 

is weighted with weight wij. In this example 

there are 3 hidden units (blue) and 4 visible 

units (white). 

A Boltzmann machine, like a Hopfield network, is a network of units with an "energy" 

defined for the network. It also has binary units, but unlike Hopfield nets, Boltzmann 

machine units are stochastic. The global energy, 𝐸, in a Boltzmann machine is identical in 

form to that of a Hopfield network: 

Figure 2.18: Boltzmann Machine 

(Boltzmann machine, 2016) 
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𝐸 =  − (∑ 𝑤𝑖𝑗𝑠𝑖𝑠𝑗

𝑖<𝑗

+  ∑ 𝜃𝑖𝑠𝑖

𝑖

) 

Where: 

 𝑤𝑖𝑗: The connection strength between unit j and unit i. 

 𝑠𝑖: The state, 𝑠𝑖 ∈  {0, 1},  

 𝜃𝑖: The bias of unit i in the global energy function. (− 𝜃𝑖is the activation threshold for 

the unit.) 

The connections in a Boltzmann machine have two restrictions: 

 𝑤𝑖𝑖 = 0    ∀𝑖. (No unit has a connection with itself.) 

 𝑤𝑖𝑗 =  𝑤𝑗𝑖    ∀𝑖, 𝑗. (All connections are symmetric.) 

Often the weights are represented in matrix form with a symmetric matrix W, with zeros 

along the diagonal. 

The units in the Boltzmann Machine are divided into 'visible' units, V, and 'hidden' units, H. 

The visible units are those which receive information from the 'environment', i.e. our training 

set is a set of binary vectors over the set V. The distribution over the training set is denoted 

as𝑃+(𝑉).  

Remarkably, this learning rule is fairly biologically plausible because the only information 

needed to change the weights is provided by "local" information. That is, the connection (or 

synapse biologically speaking) does not need information about anything other than the two 

neurons it connects (Boltzmann machine, 2016). 

2.13 Backpropagation Algorithm 

The Backpropagation Algorithm is a learning algorithm used by neural nets with supervised 

learning. It is a special form of the delta learning rule (BackPropagation). The back 

propagation algorithm was originally introduced in the 1970s, but its importance was not 

fully appreciated until a famous 1986 paper by David Rumelhart, Geoffrey Hinton and 

Ronald Williams. The paper describes several neural networks where backpropagation 

works far faster than earlier approaches to learning, making it possible to use neural nets to 
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solve problems which had previously been insoluble. Today, the backpropagation algorithm 

is the workhorse of learning in neural networks (Nielsen, 2015). 

The backpropagation algorithm trains a given feed-forward multilayer neural network for a 

given set of input patterns with known classifications. When each entry of the sample set is 

presented to the network, the network examines its output response to the sample input 

pattern. The output response is then compared to the known and desired output and the error 

value is calculated. Based on the error, the connection weights are adjusted. The 

backpropagation algorithm is based on Widrow-Hoff delta learning rule in which the 

weight adjustment is done through mean square error of the output response to the sample 

input (Velasquez, 1998). The set of these sample patterns are repeatedly presented to the 

network until the error value is minimized (Kawaguchi, 2006). 

In this project, a combination of Multilayer Perceptron along with Backpropagation will be 

used to train and classify the available data to produce an LULC map with the help of 

training sets that have gone through Feature Scaling. 

2.14 Working with UAV acquired data 

Remotely gathered data is available from a range of sources (Satellite and Aerial 

Photography) and data collection techniques and is often the only type of data that is not 

always easily found within the public domain. This is largely due to the fact that most of this 

data is acquired by equipment that is expensive to build and maintain. 

Despite its high bandwidth, coverage over a large geographical area and proven to be cheaper 

over long distances (Principles of Data Communications: Media Characteristics), satellite 

images have several drawbacks. Some are listed as below: 

 Accessibility: Apart from a few selected satellites, most of the high resolution 

satellite data have to be purchased or a request has to be made for it to be accessible 

for educational purposes. 

 Affordability: If required by organizations for specific applications, then purchasing 

satellite images seems reasonable. However, for research and educational purposes, 

purchasing the same does not seem viable by any means. 
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 Resolution: This point overlaps with accessibility;such that higher resolution data is 

usually unavailable free of cost and the data which is available has very poor 

resolution, which may not serve the purpose. 

 Time factor: At times even if individuals opt for purchase of satellite images, the 

time taken to place the order as well as receiving it eventually places a lot of 

hindrances in the progress of the project for which it is required. Also, most satellites 

have another disadvantage of revisit time, such that they can only visit a certain 

geographical area after a span of time. 

 Noise and Interference: Data wise, satellite images suffer from noise such as 

speckle, cloud cover, haze, glare and dust. Due to this data has to go through 

atmospheric and radiometric corrections for them to be useful. 

However, in recent times, due to the emergence of the UAV or the Unmanned Aerial 

Vehicle, popularly known as the Drone, these data issues have largely been taken care of. 

They may not be cover as much area as a satellite may cover in flight but they ensure 

frequent revisits, easy availability and high resolution data (Up to an accuracy of 0.7cm at a 

flying altitude of 50m, PrecisionHawk Lancaster Rev 5) which may have diverse applications 

in various different domains, including agriculture, mining, urban planning, defense, energy 

and utilities, emergency response and forestry to name a few. 

In addition, they may even 

venture into areas which may 

otherwise prove to be 

hazardous for human beings. 

They have the capability of 

staying in the air for 

prolonged period of time, 

performing a precise, 

repetitive raster scan of a 

region, day-after-day, night-

after-night in complete 

darkness, or, in fog, under 

computer control, performing a geological survey, visual or thermal imaging of a region and 

even measuring cell phone, radio, or, TV coverage over any terrain (UAVS, 2016). 

Figure 2.19: PrecisionHawk Lancaster Rev 5 (Lancaster, 2016) 
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The data being used for 

this project has been 

acquired by 

PrecisionHawk 

Lancaster Rev 3 in 2015 

(Further details about the 

data used in this project 

have been attached in 

Appendix-I and 

Appendix-II of this 

project). Acclaimed as Market Leaders in the Unmanned Aerial Platform based Survey 

Solutions Industry, PrecisionHawk has one of kind equipment and a variety of field 

swappable plug-and-play sensors which include visual, thermal, multispectral and LIDAR 

sensors. It is the first to have LIDAR sensor on aerial platform in India.  

Claimed by many as “the future of data collection”, UAV systems and services are here to 

stay. With Amazon (Stevenson, 2016) and Dominos (Sachdeva, 2016) trying their best to 

integrate UAV service delivery for extending their services, today the drone market is 

infectiously moving from the defense domain to civilian applications and have the capability 

to take over the aerial data market in a big way. 

 

 

 

 

 

 

 

 

 

 

 

 

 METHODOLOGY 

 

3.01 Outline 

Figure 2.20: PrecisionHawk Lancaster Rev 3 (Reich, 2015) 
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This section describes the overall methodology of development of the plugin named ‘MLP’ 

developed based on ANN approach. Here, training and testing dataset have been created 

keeping in mind the objective of LULC classification. 

A FeedForward Multi Layer Perceptron has been implemented and backpropagation 

algorithm has been used to provide training to the training datasets. As mentioned earlier, 

Backpropagation is a well-known algorithm for learning of ANN. 

The basic structure of the network 

consists of a three layer neural 

network, namely an input layer 

comprising of two nodes, a hidden 

layer comprising of three nodes 

and one output layer having one 

node, i. e. the classified land use 

land cover map.  

In all neural networks the three 

fundamentals that one must follow 

are: 

1. Build it: Create the skeletal structure of the network with all nodes and their 

connections well-defined for training. 

2. Train it: Using a suitable training algorithm, train the network to perform certain 

function. 

3. Test it: Test the trained network on the testing dataset. 

Similarly, the MLP tool, too, uses the same fundamentals for its formation. These modules 

will be explained in greater details further in this document. 

 

 

Figure 3.02: Multi Layer Perceptron for MLP 
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Figure 3.03: Work Flow of the Multi Layer Perceptron in MLP Tool 

 

The above figure depicts a block diagram of the MLP tool consisting of various components 

i.e. MLP Training, MLP Testing and MLP Working blocks. It shows the flow of data and 

connectivity among various sub modules of MLP. 

3.02 Modules  

The development of the tool can be divided into four basic modules. They are as follows: 

1. Python Tool Development 

a. User Interface (UI) of the Tool: 

The basic UI of the tool will be designed 

keeping in mind the following criteria: 

 Ease of Use 

 Clarity  

 Integration with the software. 

b. Logic Development: The code for 

the tool for using Multilayer Perceptron as 

the Artificial Neural Network for 

Python Tool 
Development

Training Sets

Accuracy 
Assessment
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classification of the dataset is the main module. This module governs the behavior of 

the tool. 

2. Training Set 

Another important module in this project is the building of the training set. It has a great 

bearing on the results because its accuracy will determine the accuracy of the datasets that 

will be classified using this tool. The more intricate the training, the better the results will be.  

3. Accuracy Assessment 

In the end, after testing the tool, the resultant classified dataset will be assessed for its 

accuracy using accuracy assessment techniques such as the Kappa Accuracy Test or the 

Confusion Matrix. 

3.03 Software 

The above mentioned modules will be developed using several software, namely: 

1. Python Tool Development: This can further be 

divided into the following: 

a. UI Design: The UI of the tool has been 

designed in “QT Creator IDE” which is a fully-stocked 

cross-platform integrated development environment for easy 

creation of connected devices, UIs and applications (QT 

Creator IDE). 

b. Logic development: Using the “NumPy” 

library of Python, the logic will be developed in the 

Notepad++ text editor. Python is a programming language 

that lets you work more quickly and integrate your systems 

more effectively (Python). 

2. Building Training Sets: The training sets for training 

the dataset for accurate classification using artificial neural 

network will be built in QGIS Wien 2.8.7. QGIS is a cross-

platform free and open-source desktop geographic 

information system (GIS) application that provides data 

viewing, editing, and analysis (Wikipedia, QGIS). 

Python Tool

Training Sets

Accuracy Test

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Geographic_information_system
https://en.wikipedia.org/wiki/Geographic_information_system
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3. Accuracy Assessment: The accuracy of the dataset will be evaluated using a well-

known accuracy test such as the “Kappa Accuracy Test”. 

3.04 Development 

1. Python Tool Development: The development of the tool will be elaborated below. 

a. UI Design: At first, the basic plugin was created in Quantum GIS 2.7.8 Wien 

version. For this several initial steps had to be performed, as shown below: 

Python Bindings for Qt  

Since the plugin was being developed in Python, the python bindings for Qt 

needed to be installed. For building plugins, the pyrcc4 command-line tool was 

needed. Since the tool was developed in a Windows platform, the OSGeo4W 

network installer was downloaded and Express Desktop Install was chosen.The 

QGIS package was installed. After installation, the pyrcc4 tool could be accessed 

via the OSGeo4W Shell. 

A Text Editor or a Python IDE 

Any kind of software development requires a good text editor or an IDE (Integrated 

Development Environment). For our tool, Notepad++ editor on Windows was used. 

Plugin Builder plugin 

This helpful QGIS plugin creates all the necessary files and the boilerplate code 

for a plugin. This plugin was installed and used. 

Plugins Reloader plugin  

This is another helper plugin which allows iterative development of plugins. 

Using this plugin, one can change the plugin code and have it reflected in QGIS 

without having to restart QGIS every time. Even this plugin was installed. 
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Procedure 

 On opening QGIS, the ‘Plugin Builder’ was installed from the already 

available plugins. The Plugin Builder creates a QGIS plugin template for 

use as a starting 

point in plugin 

development. Once 

installed, it can be 

found on the list of 

plugins in our 

‘Plugin’ drop down 

menu. Using it, the 

basic framework of a 

plugin can be 

created.  

 On clicking on the Plugin Builder, a window asking for details will appear. 

The Class name will be the name of the Python Class containing the logic 

of the plugin. This will also be the name of the folder containing all the 

plugin files. The Plugin name is the name under which the plugin will 

appear in the Plugin Manager. A description can be added in the 

Description field. The Module name will be the name of the main python 

file for the plugin. The version numbers were left to default values. The 

Text for menu item value will be how the users will find the plugin in 

QGIS menu. Name and email address was specified in the appropriate 

fields. The Menu field will decide where the plugin item is added in QGIS. 

Since our plugin is for raster data,Raster was selected. Next, a directory for 

the plugin had to be chosen.  

c:\Users\username\.qgis2\python\plugins 

Browsing to the QGIS python plugin directory on your computer the 

respective folder was created. A confirmation dialog box appeared, 

Figure 3.03: Plugin Builder 
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confirming the formation of the plugin. This led to the formation of the 

basic tool and its supporting files. 

 Before using the newly created plugin, the ‘resources.qrc’ file that was 

created by Plugin Builder was compiled by launching the OSGeo4W Shell. 

 

 

 

 

 

 

 

 

 By browsing to the plugin directory where the output of Plugin Builder 

was created and typing ‘make’, the pyrcc4 command was run that 

wasinstalled as a part of the Qt bindings for Python. 

 Here is the first look of the created plugin: 

 

 

 

On clicking on this plugin, as of now, a blank non-functional window will 

be displayed shown below: 

Figure 3.05: MLP Classifier Plugin: First Look 

Figure 3.04: OSGeo4WShell 
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 In order to design the window of the MLP Classifier plugin, the software 

‘QT Creator’ was used. The already created file 

‘mlp_classifier_dialog_base.ui’ was opened from the repository of files 

created by the Plugin Builder. 

Thus, the end product is as follows: 

Figure 3.07: The MLP Tool 

 

b. Logic Development 

The logic for the MLP tool has been developed using the following libraries: 

 PyBrain: PyBrain or Python-Based Reinforcement Learning, Artificial 

Intelligence and Neural Network Library, is a modular Machine Learning 

Library for Python. Its goal is to offer flexible, easy-to-use yet still 

powerful algorithms for Machine Learning Tasks and a variety of 

Figure 3.06: MLP Classifier: Non-Functional 

Window 
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predefined environments to test and compare your algorithms (Welcome 

to Pybrain). 

 Matplotlib: Matplotlib is a python 2D plotting library which produces 

publication quality figures in a variety of hardcopy formats and interactive 

environments across platforms. matplotlib can be used in python scripts, 

the python and ipython shell (ala MATLAB®* or Mathematica®), web 

application servers, and six graphical user interface toolkits (Matplotlib). 

 NumPy: NumPy is the fundamental package for scientific computing with 

Python. It contains among other things: 

 A powerful N-dimensional array object 

 Sophisticated (broadcasting) functions 

 Tools for integrating C/C++ and Fortran code 

 Useful linear algebra, Fourier transform, and random number 

capabilities (NumPy). 

As mentioned above, PyBrain facilitates its users to develop neural networks with 

great ease. PyBrain, as its written-out name already suggests, contains algorithms 

for neural networks, for reinforcement learning (and the combination of the two), 

for unsupervised learning, and evolution. 

The MLP Tool 

For this tool, we created a FeedForward model of Multi Layer Perceptron with 

Backpropagation training algorithm. 

The FeedForward model, as mentioned earlier, consists of three layers, namely an 

input layer comprising of two nodes, a hidden layer comprising of three nodes 

and one output layer having one node, i. e. the classified land use land cover 

map.  

The number of nodes in every layer was determined in the following manner: 

http://ipython.org/
http://matplotlib.org/#ftn.matlab
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 Nodes in the input layer: The two nodes in the input layer comprise of 

the two indices used for training the network, i. e., Green-Red Vegetation 

Index (GRVI) and Urban Index (UI). 

 Nodes in the hidden layer: The number of nodes in this layer has been 

determined based on the number of classes that the LULC map will be 

classified into, i. e., three classes, vegetation, urban and mixed classes. 

 Nodes in the output layer: The node in this layer is the output classified 

LULC map which will be the product after the testing dataset has been 

trained by the MLP network. 

The Network 

By importing the ‘FeedForward’ from the PyBrain library, the network has been 

formed. The three different layers in the network have been formed by importing 

the ‘LinearLayer’ class for the input and output layers and the ‘SigmoidLayer’ 

class for the hidden layer. In order to establish a connection between these layers, 

the ‘FullConnection’ class has been imported.  

The Training  

The training set has been formed by building datasets after importing the 

‘SupervisedDataSet’ class. While forming these datasets, the ranges of every class 

have been specified such that: 

 

Here, the range of every class is mentioned and the target output is also specified. 

Once the training dataset has been formed, we train the network with the same so 

as to enable the MLP network to accurately classify the raw ortho image into the 

aforementioned three distinct classes. To train, we use the 

‘trainUntilConvergence’ method which will ensure that the network keeps on 
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training until it achieves the global minimum, or the lowest error rate with 

reference to the given training and target datasets. 

Once the training is done, we print a line graph showing the error rates of our 

network. This is how it appears: 

Figure 3.08: Graphical Representation of the Achieved Error Rate after Training 

 

From the above graph we, can visualize that the error rate converges at 0 after 141 iterations. 

Now, the net is ready for testing. 

The Testing 

Once the training is complete and a desirable error rate is achieved, the trained 

network is tested using ‘n.activate()’ method. This causes the trained network to 

classify the given raw ortho image into the three different classes. 

 

2. Building Training Sets 

The training setshave been built in QGIS Wien 2.8.7. Several small patches of the UAV 

acquired dataset have been taken for the same reason. Given below are the steps followed 

for building the training sets: 

 Using the Green-Red Vegetation Index (GRVI), three distinct classes could be 

defined, namely, the urban section comprising of the settlements and the roads, 
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the vegetation class and the mixed class. The formula to compute GRVI has been 

given as follows: 

𝐺𝑅𝑉𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
 

 Similarly, the Urban Index (UI) makes use of the red and blue band of the RGB 

sensor data and provides distinct differentiation between the vegetation, urban 

segments and the mixed class. The formula to compute UI is given as follows: 

𝑈𝐼 =  
𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
 

 Using these two indices, the three major classes have been formed and fed to the 

training dataset. 

Given below are the resulting GRVI and UI rasters after being applied to the orthomosaic of 

the UAV acquired data. 

Figure 3.09: Green-Red Vegetation Index 
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Figure 3.10: Urban Index 

 

These values have further been normalized using the Min-Max Normalization Technique, 

which applies the following formula: 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋𝑖 −  𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛
 

Thereafter, we get these values within a range of 0 to 1. 

Thus, the three classes and their respective ranges have been given below: 

Table 3.01: Ranges of Classes 

Index Vegetation   Mixed Urban 

 Minimum Maximum Minimum Maximum Minimum Maximum 

GRVI -0.0067 0.0487 -0.0067 -0.0517 -0.0517 -0.4013 

UI 0.2257 0.8541 0.0276 0.1408 -0.5894 0.0276 

Class 0 1 2 
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3. Accuracy Assessment 

At last we test the accuracy of our MLP tool using the ‘Kappa Accuracy Test’. Cohen's 

kappa coefficient is a statistic which measures inter-rater agreement for qualitative 

(categorical) items. It is generally thought to be a more robust measure than simple percent 

agreement calculation, since κ takes into account the agreement occurring by chance. 
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RESULT 

After running the raw dataset through the MLP tool the results that have been acquiredare as 

follows: 

Figure 4.01: Classification of UAV Acquired Dataset with the MLP Tool 

 
 

 

 

           Figure 4.02: Manually Classified LULC Map 

   
 

As seen above, with the increase in iterations, the accuracy of classes made by the MLP tool 

increases. As such we ran the dataset twice through the tool; once with 50 iterations and once 

with 100 iterations. As the map above denotes, the one with 100 iterations came closest to the 

one which had been classified manually. Given below is a graph showing the pixel counts in 

every case: 

Legend 

 Vegetation Class 

 Mixed Class 

 Urban Class 

With 50 Iterations With 100 Iterations 
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Figure 4.03: Bar Graph showing the Pixel Count in 50 Iterations, 100 Iterations and Manually 

Classified LULC Map 

 
 

Table 4.01: Pixel Count 

 Manual 

Classification 

50 

Iterations 

100 

Iterations 

Vegetation 3320 2471 4927 

Mixed 6081 8337 6160 

Urban 2237 830 551 

 

Thus even through the pixel count we can see that the classification done by the MLP tool in 

100 iterations comes closer to the manually classified LULC map as compared to the one 

with 50 iterations.  

Hence, we can say that with greater number of iterations we can increase the accuracy 

further. 
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DISCUSSION 

With the main goal being removal of manual intervention in the formation of Land Use Land 

Cover Maps, the MLP tool has by far sorted out a majority of this issue. As shown in the 

previous section, the classification results have been fairly accurate. Of course, there is vast 

scope in improvement of its performance and quality. This can be ensured further with 

intense training of our training sets and more sophisticated neural network structure. For this, 

more number of training sets will have to be fed and classes will have to be defined in greater 

detail. 

Let us look into the advantages that the GIS industry can plough from this tool. 

 Time efficient: As is always the case, the LULC map is not an end product. It is 

further utilized and processed to yield a number of thematic maps. Thus, by 

accelerating the production of this very product, the production of other products 

dependent on it can also be accelerated to a greater extent. Hence, saving valuable 

time. 

 Scope for increased accuracy: With a much more intense training net, the 

classification can attain high accuracy results. This will further improve the quality 

and also increase its productivity. 

 Set standards for classification: As mentioned in the introduction of this document, 

one of the greatest disadvantages of manual creation of the LULC map is the differing 

standards of classification due to differences in individual understanding and 

knowledge, this can be easily overcome by the MLP tool. Thus, ensuring uniformity 

and reliability. 

 Increased reproducibility: As it is a neural network that will be classifying the 

images and giving the outputs, scope of reproducibility of the LULC map of the same 

area can be increased greatly. This, too, will help in standardization and quality check 

of the maps. 

Further, using Black Box Optimization, the problems of over fitting can be overcome, 

ensuring a very efficient net that solves the classification problem. 
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CONCLUSION 

The MLP tool by far, has achieved what it had set forth. However, there is a vast scope for 

improvement, innovation and optimization for this tool. Backed with Artificial Neural 

Network, this tool will, in the near future, not only be capable of resolving the resounding 

LULC classification problems, but will also be able to perform image recognition, feature 

extraction and pattern recognition. 

Keeping what we have covered so far in the functionalities of this tool, I would further go on 

to say that there is a lot in store for this tool for its future prospects. A few could be as 

follows: 

 Solve real-life problems: With the ability to do feature extraction, this tool could 

help environmentalists and miners in a great way. 

 Ease of use for the user: The user need not be an expert in Artificial Neural 

Network. All that will be required from his end would be an input image and with just 

a few clicks, he will be able to produce an LULC map, which would have otherwise 

taken him at least 2 days to produce. 

 Integration with all GIS software: As of now, this tool is only available on QGIS 

Wien 2.8.7. However, its integration with not only all versions of QGIS but also with 

different GIS software such as the ArcMap, ERDAS and ENVI. 

Thus, with these future prospects in mind, I will be continuing with the development of this 

tool to make it even more progressive, practical and easier to use. 
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GLOSSARY 

Activation: A node’s level of activity; the result of applying the activation function to the 

net input to the node. Typically this is also the value the node transmits. 

Asynchronous: Process in which weights or activations are updated one at a time, rather 

than all being updated simultaneously. 

Generalization: The ability of a NN to produce reasonable responses to input patterns that is 

similar, but not identical, to training patterns. 

Graphical User Interface: A type of interface that allows users to interact with electronic 

devices through graphical icons and visual indicators such as secondary notation, as opposed 

to text-based interfaces, typed command labels or text navigation. 

Inhibitory connection: Connection link between two neurons such that a signal sent over 

this link will reduce the activation of the neuron that receives the signal. This may result 

from the connection having a negative weight, or from the signal received being used to 

reduce the activation of a neuron by scaling the net input the neuron receives from other 

neurons. 

Iteration: The act of repeating a process, either to generate an unbounded sequence of 

outcomes, or with the aim of approaching a desired goal, target or result. Each repetition of 

the process is also called an ‘iteration’ and the result of one iteration is used as the starting 

point for the next iteration. 

Java: A general-purpose computer programming language that is concurrent, class-based, 

object-oriented, and specifically designed to have as few implementation dependencies as 

possible. 

Land cover: The observed (bio)physical cover on the earth's surface. 

Land use:The arrangements, activities and inputs people undertake in a certain land cover 

type to produce, change or maintain it. 

Local and Global Minima and Maxima:In mathematical analysis, the maxima and minima 

(the respective plurals of maximum and minimum) of a function, known collectively as 

extrema (the plural of extremum), are the largest and smallest value of the function, either 
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within a given range (the local or relative extrema) or on the entire domain of a function (the 

global or absolute extrema) 

Neuron:Also known as a neurone or nerve cell. It is an electrically excitable cell that 

processes and transmits information through electrical and chemical signals. 

Perceptron: An algorithm for supervised learning of binary classifiers: functions that can 

decide whether an input (represented by a vector of numbers) belongs to one class or another. 

Synapse: In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) 

to pass an electrical or chemical signal to another neuron. 

Synchronous updates: All weights are adjusted at the same time. 

Test set: The ensemble of “input-desired” response data used to verify the performance of a 

trained system. This data is not used for training. 

Training epoch: One cycle through the set of training patterns. 

Training set: The ensemble of “inputs” used to train the system for a supervised network. It 

is the ensemble of “input-desired” response pairs used to train the system. 

User Interface (UI): The design of user interfaces for machines and software, such as 

computers, home appliances, mobile devices and other electronic devices, with the focus on 

maximizing the user experience. The goal of user interface design is to make the user's 

interaction as simple and efficient as possible, in terms of accomplishing user goals. 

Validation set: The ensemble of samples that will be used to validate the parametersused in 

the training (not to be confused with the test set which assesses the performance of the 

classifier). 
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APPENDIX-I: USED DATA 

The data used for creating training sets and testing is an orthomosaic of an urban area having 

an average GSD of 2.43 cm. 

 

 

Figure 9.01: Orthomosaic of the 

Area 

Figure 9.02: Number of 

overlapping images computed for 

each pixel of the orthomosaic. 

Number of overlaps:  
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Table 9.01: XYZ Accuracy of the GCPs 

GCP 

Name  

Accuracy 

XY/Z [m] 

Error X 

[m] 

Error Y 

[m] 

Error Z 

[m] 

Projection 

Error [pixel] 

Verified/Marked 

mtp0 

(3D) 

0.200/ 

0.200 

-0.131 0.223 -1.294 1.025 4 / 4 

mtp1 

(3D) 

0.200/ 

0.200 

0.087 -0.391 0.110 1.651 8 / 8 

mtp2 

(3D) 

0.200/ 

0.200 

0.093 0.200 0.768 2.348 7 / 7 

mtp3 

(3D) 

0.200/ 

0.200 

0.400 0.076 0.583 0.571 4 / 4 

mtp4 

(3D) 

0.200/ 

0.200 

-0.210 -0.073 -0.062 1.145 4 / 4 

mtp5 

(3D) 

0.200/ 

0.200 

-0.059 -0.019 -0.551 0.971 7 / 7 

mtp6 

(3D) 

0.200/ 

0.200 

-0.188 -0.012 0.445 1.190 6 / 6 

Mean 

[m] 

 -

0.001071 

0.000612 0.000014   

Sigma 

[m] 

 0.198665 0.190737 0.667893   

RMS 

Error 

[m] 

 0.198668 0.190738 0.667893   
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APPENDIX-II: UAV HARDWARE SPECIFICATIONS 

Table 9.02: Hardware specifications of PrecisionHawk Lancaster Rev 3 

Hardware CPU: Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz 

RAM: 59GB 

GPU: Cirrus Logic GD 5446 (Driver: unknown) 

Operating System Linux 3.13.0-61-generic x86_64 

Camera Model 

Name 

NIKON1J4_1NIKKOR10mmf/2.8_10.0_5232x3488 (RGB) 

Image Coordinate 

System 

WGS84 

Ground Control 

Point (GCP) 

Coordinate System 

WGS84 

Output Coordinate 

System  

WGS84 / UTM zone 43N 

Keypoints Image 

Scale 

Full, Image Scale: 1 

Advanced: 

Matching Image 

Pairs 

Aerial Grid or Corridor  

Advanced: 

Matching Strategy 

Use Geometrically Verified Matching: yes  

Advanced: 

Keypoint 

Extraction 

Targeted Number of Keypoints: Automatic  

Advanced: 

Calibration 

Calibration Method: Standard, Internal Parameters Optimization: 

Leading, External Parameters Optimization: All, Rematch: no  

 

 


