
Use of Artificial Neural Network for Land Use Land

Cover Classification of UAV Acquired Imagery

THESIS SUBMITTED TO

Symbiosis Institute of Geoinformatics

FOR PARTIAL FULFILLMENT OF THE M. Sc. DEGREE

By

Marcia Chen
PRN14070241023

(Batch 2014-16)

Symbiosis Institute of Geoinformatics

Symbiosis International University

5th Floor, Atur Centre, Gokhale Cross Road,

Model Colony, Pune – 411016.

Page | 1

CERTIFICATE

Certified that this thesis titled ‘Use of Artificial Neural Network for Land Use Land Cover

Classification of UAV Acquired Imagery’ is a bonafide work done by Miss Marcia Chen,

at Webonise Lab and Symbiosis Institute of Geoinformatics, under our supervision.

Supervisor External

Prateek Srivastava,

Director – Business Development,

PrecisionHawk,

Pune.

Supervisor Internal

Col. B. K. Pradhan,

Professor,

Symbiosis Institute of Geoinformatics,

Pune.

Page | 2

CONTENTS

I. Acknowledgement………………………………………………………………. 4

II. List of Figures…………………………………………………………………… 5

III. List Tables………………………………………………………..……………… 6

IV. Abbreviation list………………………………………………………………… 7

V. Preface…………………………………………………………………………... 8

1. Introduction………………………………………………………………………

1.01 Need for a Solution…………………………………………….......................................

1.02 Objective……………………………………………………….......................................

1.03 About Artificial Neural Network………………………………......................................

1.04 Usefulness and Capabilities……………………………………......................................

9

9

9

10

10

2. Literature Review………………………………………………………………..

2.01 Machine Learning Through the Ages…………………………………………………...

2.02 History of Neural Networks……………………………………………………………..

2.03 Analogy between Human and Artificial Neural Nets…………………………………...

2.04 Neural Network Model………………………………………………….........................

2.05 Architecture of Artificial Neural Network………………………....................................

2.06 The Perceptron: The Fundamentals……………………………………………………..

2.07 Multi-Layer Perceptron (MLP)………………………………………….........................

2.08 The Perceptron Learning Algorithm…………………………………….........................

2.09 Artificial Neural Networks and Gradient Descent Algorithm…………………………..

2.010 Non Linear Activation Functions………………………………………..........................

2.011 Learning Strategies in Neural Network…………………………………………………

2.012 Learning Mechanisms in Neural Network………………………....................................

2.013 Backpropagation Algorithm……………………………………………..........................

2.014 Working with UAV acquired data………………………………....................................

11

11

12

13

15

15

16

17

20

21

23

25

25

32

33

3. Methodology………………………………………………..……………………

3.01 Outline………………………………………...

3.02 Modules………………………………………………………………………………….

3.03 Software…………………………………………………………………………………

3.04 Development…………………………………………………………….........................

36

36

37

38

39

4. Result………………………………………………………………..................... 49

5. Discussion…………………………………………………………...................... 51

6. Conclusion…………………………………………………………..................... 52

7. References………………………………………………………….....................

8. Glossary………………………………………………………………………….

53

58

Page | 3

9. Appendix………………………………………………..…………......................

9.01 Appendix-I: Data Used……………………...

9.02 Appendix-II: UAV Hardware Specifications…...……………………………………….

60

60

62

Page | 4

ACKNOWLEDGEMENT

As this project comes to a close, I would like to look back and express my gratitude towards

all those people who helped me in my endeavor.

To begin with, I would like to thank my external supervisor and mentor, Mr. Prateek

Srivastava, Director – Business Development at PrecisionHawk, who devoted his valuable

time and wisdom in guiding me in this project. Without his expertise, this project would not

have been the same.

I would also like to extend my gratitude towards Mr. Yogesh Mukhi, GIS and Remote

Sensing Expert at PrecisionHawk, for providing his technical expertise and know-how in the

same.

I appreciate the guidance provided to me by Mr. Anand Jadhav, Senior Technical Lead at

PrecisionHawk, who gave his useful insights on data management and processing for this

project.

Further, I would thank the faculty of Symbiosis Institute of Geoinformatics, Pune, namely Dr

T. P. Singh, Dr Navendu Chowdhury and Col B. K. Pradhan, without whom my knowledge

about GIS and its application in the various domains would not have been clear.

Lastly, I would like to thank my mother, Mrs. Roselind Chen, for always being there and

providing moral support throughout.

Page | 5

LIST OF FIGURES

Figure 2.01: Machine Learning: Time Line (Hu, 2013)

Figure 2.02: Analogy between human neurons and artificial nets (Vinícius Gonçalves

Maltarollo, January 16, 2013)

Figure 2.03: Network Layers (Neural Networks, 2013)

Figure 2.04: Feedforward ANN

Figure 2.05: Feedback ANN

Figure 2.06: A Perceptron

Figure 2.07: Single Layer Multilayer Perceptron

Figure 2.08: MLP with Two Hidden Layers (Neural Network, 2016)

Figure 2.09: Learning process in a parametric system (Rojas, 1996)

Figure 2.10: Global Minimum

Figure 2.11: Local and Global Maxima and Minima (Wikipedia, Maxima and Minima, 2016)

Figure 2.12: Illustration of Gradient Descent(Gradient descent, 2016)

Figure 2.13: Sigmoid Function (Weisstein, 2016)

Figure 2.14: Graphical Representation of the Tan Hyperbolic Function (Weisstein,

Hyperbolic Tangent, 2016)

Figure 2.15: Illustration of Error Correction Learning (Bennamoun)

Figure 2.16: Outliers: Cause of Faulty Classification

Figure 2.17: Architecture of the competitive learning mechanism (Zipser, 1985).

Figure 2.18: Boltzmann Machine (Boltzmann machine, 2016)

Figure 2.19: PrecisionHawk Lancaster 5 (Lancaster, 2016)

Figure 2.20: PrecisionHawk Lancaster Rev 3 (Reich, 2015)

Page | 6

Figure 3.01: Multi Layer Perceptron for MLP

Figure 3.01: Work Flow of the Multi Layer Perceptron in MLP Tool

Figure 3.03: Plugin Builder

Figure 3.04: OSGeo4WShell

Figure 3.04: MLP Classifier Plugin: First Look

Figure 3.05: MLP Classifier: Non-Functional Window

Figure 3.06: Designing the UI using the QT Creator

Figure 3.07: The MLP Tool Interface

Figure 3.08: Graphical Representation of the Achieved Error Rate after Training

Figure 3.09: Green-Red Vegetation Index

Figure 3.10: Urban Index

Figure 4.01: Classification of UAV Acquired Dataset with the MLP Tool

Figure 4.02: Manually Classified LULC Map

Figure 4.03: Bar Graph showing the Pixel Count in 50 Iterations, 100 Iterations and Manually

Classified LULC Map

Figure 9.01: Orthomosaic of the Area

Figure 9.02: Number of overlapping images computed for each pixel of the orthomosaic.

LIST OF TABLES

Table 2.01: An Analogy between Human and Artificial Neurons

Table 3.01: Ranges of Classes

Table 9.01: XYZ Accuracy of the GCPs

Table 9.02: Hardware specifications of PrecisionHawk Lancaster Rev 3

Page | 7

ABBREVIATION LIST

AI Artificial Intelligence

ANN Artificial Neural Network

GRVI Green Red Vegetation Index

GUI Graphical User Interface

LULC Land Use Land Cover

MLP Multi-Layer Perceptron

MSE Mean Squared Error

SLP Single Layer Perceptron

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

UI User Interface

Page | 8

PREFACE

Classification of remotely sensed data has been widely used to generate thematic Land-Use

Land-Cover (LULC) inventories for a range of applications including urban planning,

agricultural crop characterization, and forest ecosystem classification. In response, a number

of different classification approaches have been developed to accomplish such tasks. Most

notable have been classification approaches based on Artificial Neural Networks (ANNs).

ANNs were originally designed as pattern-recognition and data analysis tools that mimic the

neural storage and analytical operations of the brain. ANN approaches have a distinct

advantage over statistical classification methods in that they are non-parametric and require

little or no a priori knowledge of the distribution model of input data. Additional superior

advantages of ANNs include parallel computation, the ability to estimate the non-linear

relationship between the input data and desired outputs, and fast generalization capability.

Many previous studies on the classification of images have confirmed that ANNs perform

better than traditional classification methods in terms of classification accuracy, such as

maximum likelihood classifiers.

Thus, this paper will focus on applying neural network machine learning methods to UAV

acquired images for the purpose of automatic detection and classification. The aim is to

formulate a tool which will produce LULC maps with marginal errors.

Page | 9

INTRODUCTION

With large number of data sources coming into picture today, we have been blessed with a

rich and varied repository for almost every part of the Earth. However, due to its surmounting

quantity and size, we may sometimes be unable to smartly process and utilize them. Land use

Land cover (LULC) Classification is one such output which we have not been able to

automatically produce yet. Hence, the need for an innovative tool that can enable us to do so.

1.01 Need for a Solution

At large, it has been seen, that most organizations perform and produce Land Use Land

Cover (LULC) maps manually. Although manual classification is considered more efficient

as compared to machine classification due to the ability of humans for superior pattern

recognition and categorization (Prasad S. Thenkabail, 2015), it surely could pose some

serious drawbacks, namely:

 Time consuming: At a time where everything is fast paced and there is a demand for

good quality at a reasonable time, classifying data manually can be very time

consuming.

 No guarantee of reproducibility: Since manual classification relies largely on the

interpretability of an individual, it may vary from person to person, providing no

assurance of 100% similarity in classifying standards.

 More losses than gains: Although manual classification can be cost effective, in

cases where classification standards vary from one dataset to another, redoing them

again and again will not only prove to be a waste of time but also could incur losses

for that organization (Management Association, 2013).

By training a machine to classify datasets, we will not only be able to achieve uniformity, but

will also be able to save time and assure reproducibility, hence, increasing efficiency to a

great extent. Artificial Neural Network will help us to do just that.

1.02 Objective

The basic objective of this project is to instill the essence of “Smart Processing” rather than

labor-intensive, grueling work. This tool aims to cater to the needs of many for reducing

manual work and classifying datasets in comparatively shorter period of time, whereby also

providing uniformity and a certain amount of reliability.

Page | 10

1.03 About Artificial Neural Network

Artificial neural networks (ANNs) are a family of models inspired by biological neural

networks (the central nervous systems of animals, in particular the brain) and are used to

estimate or approximate functions that can depend on a large number of inputs and are

generally unknown. Artificial neural networks are generally presented as systems of

interconnected "neurons" which exchange messages between each other. The connections

have numeric weights that can be tuned based on experience, making neural nets adaptive to

inputs and capable of learning (Wikipedia, Artificial neural network).

1.04 Usefulness and Capabilities

 Exploits non- linearity: It can help in solving non-linear problems, unlike the single

layer perceptron.

 Input/output mapping: Its learning ability sets it apart from other computational

techniques.

 Adaptivity: It can adapt free parameters to its surroundings. In terms of humans, the

free parameters could refer to the synapses.

 Evidential response: It takes decisions with a measure of confidence.

 Fault tolerance: Since a large number of neurons are involved, the failure of one

does not result in the failure of the complete system. Thus, it exhibits graceful

degradation.

 VLSI Implementation: It features VLSI (Very Large Scale Implementation)

qualities.

 Neurobiological Analogy: It is motivated by human analogy.

Thus, with these advantages in hand, we hope to build a Python tool in QGIS which will, to

an extent, automate the Land use Land cover classification procedures, keeping in mind the

importance of accuracy and time.

Page | 11

LITERATURE REVIEW

2.01 Machine Learning Through the Ages

“Those who cannot remember the past are condemned to repeat it.”

- George Santayana (Santayana, 1905-1906)

The development of machine learning is an integral part of the development of artificial

intelligence. In the early days of AI, people were interested in building machines that mimic

human brains. The perceptron model was invented in 1957, and it generated over optimistic

view for AI during 1960s. After Marvin Minsky pointed out the limitation of this model in

expressing complex functions, researchers stopped pursuing this model for the next decade.

Figure 01: Machine Learning: Time Line (Hu, 2013)

In 1970s, the machine learning field was dormant, when expert systems became the

mainstream approach in AI. The revival of machine learning came in mid-1980s, when the

decision tree model was invented and distributed as software. The model can be viewed by a

human and is easy to explain. It is also very versatile and can adapt to widely different

problems. It is also in mid 1980s multi-layer neural networks were invented, with enough

hidden layers; a neural network can express any function, thus overcoming the limitation of

perceptron. We see a revival of the neural network study.

Page | 12

Both decisions trees and neural networks see wide application in financial applications such

as loan approval, fraud detection and portfolio management. They are also applied to a wide-

range of industrial process and postal office automation (address recognition).

Machine learning saw rapid growth in 1990s, due to the invention of World-Wide-Web and

large data gathered on the Internet. The fast interaction on the Intern called for more

automation and more adaptivity in computer systems. Around 1995, SVM was proposed and

have become quickly adopted. SVM packages like libSVM, SVM light make it a popular

method to use.

After the year 2000, Logistic regression was rediscovered and re-designed for large scale

machine learning problems. In the ten years following 2003, logistic regression has attracted

a lot of research work and has become a practical algorithm in many large-scale commercial

systems, particularly in large Internet companies (Hu, 2013).

2.02 History of Neural Networks

The study of the human brain is thousands of years old. With the advent of modern

electronics, it was only natural to try to harness this thinking process. The first step toward

artificial neural networks came in 1943 when Warren McCulloch, a neurophysiologist, and

a young mathematician, Walter Pitts, wrote a paper on how neurons might work. They

modeled a simple neural network with electrical circuits.

Reinforcing this concept of neurons and how they work was a book written by Donald Hebb.

The Organization of Behavior was written in 1949. It pointed out that neural pathways are

strengthened each time that they are used (Artificial Neural Networks Technology).

W.S. McCulloch, W. Pitts described the first Neural Network Model and F. Rosenblatt

(Perceptron) and B. Widrow (Adaline) developed the first training algorithm (J. Vieira,

1997).

A neural network is a massively parallel distributed processor that has a natural propensity

for storing experiential knowledge and making it available for use. It resembles the brain in

two respects (Haykin, 1994). Firstly, knowledge is acquired by the network through a

learning process and secondly, interneuron connection strengths known as synaptic weights

Page | 13

are used to store the knowledge. Artificial neural systems, or neural networks, are physical

cellular systems which can acquire, store, and utilize experiential knowledge (Zurada, 1992).

2.03 Analogy Between Human and Artificial Neural Nets

Artificial neural nets were originally designed to model in some small way, the functionality

of the biological neural networks, which are a part of the human brain. Our brains contain

about 1011neurons. Each biological neuron consists of a cell body, a collection of dendrites

which bring electrochemical information into the cell and an axon which transmits

electrochemical information out of the cell.

Figure 2.02: Analogy between human neurons and artificial nets

(Vinícius Gonçalves Maltarollo, January 16, 2013)

(A) Human

neuron;

(B) Artificial

neuron or

hidden unity;

(C)

Biological

synapse;

(D) ANN

synapses.

A neuron produces an output along its axon i.e. it fires when the collective effect of its inputs

reaches a certain threshold. The axon from one neuron can influence the dendrites of another

neuron across junctions called synapses. Some synapses will generate a positive effect in the

dendrite, i.e. one which encourages its neuron to fire, and others will produce a negative

effect, i.e. one which discourages the neuron from firing. A single neuron receives inputs

from perhaps 105synapses. It is still not clear exactly how our brains learn and remember but

it appears to be associated with the interconnections between the neurons (i.e. at the

synapses).

Page | 14

Artificial neural nets try to model this low level functionality of the brain. This contrasts with

high level symbolic reasoning in artificial intelligence which tries to model the high level

reasoning processes of the brain. When we think, we are conscious of manipulating concepts

to which we attach names (or symbols) e.g. for people or objects. We are not conscious of the

low level electrochemical processes which are going on underneath. The argument for the

neural net approach to AI is that, if we can model the low level activities correctly, the high

level functionality may be produced as an emergent property.

A single software artificial neuron consists of a processing element which has a number of

input connections, each with an associated weight, a transfer function which determines the

output, given the weighted sum of the inputs, and the output connection itself.

An artificial neural network is a network of interconnected neurons. The network may be

trained by adjusting the weights associated with the connections in the net to try and obtain

the required outputs for given inputs from a training set.

Note that the threshold values and the weights can be adjusted together by adding an extra

connection to each neuron with an input value of -1 and a weight representing the threshold.

The neuron then fires if the sum is greater than zero.

It can be seen that there is an analogy between biological (human) and artificial neural nets.

The analogy is summarized below:

Table 2.01: An Analogy between Human and Artificial Neurons

 Human Artificial
 Neuron Processing Element

 Dendrites Combining Function

 Cell Body Transfer Function

 Axons Element Output

 Synapses Weights

However, it should be stressed that the analogy is not a strong one. Biological neurons and

neuronal activity are far more complex than might be suggested by studying artificial

neurons. Real neurons do not simply sum the weighted inputs and the dendritic mechanisms

in biological systems are much more elaborate. Also, real neurons do not stay on until the

inputs change and the outputs may encode information using complex pulse arrangements

(Lewis).

Page | 15

Today, researchers have progressed to such an extent so as to have built the world’s first

artificial neuron that is capable of mimicking the function of an organic brain cell-

including the ability to translate chemical signals into electrical impulses, and communicate

with other human cells. Richter-Dahlfors and her team have now managed to create an

artificial neuron that can mimic this function, and they have shown that it can communicate

chemically with organic brain cells even over large distances (MacDonald, 2015).

2.04 Neural Network Model

A neural network is put together by hooking together many of our simple "neurons," so that

the output of a neuron can be the input of another. For example, here is a small neural

network:

In this figure, we

have used circles

to denote the

inputs to the

network. The

circles labeled

"+1" are called

bias units, and

correspond to the

intercept term. The

leftmost layer of

the network is

called the input

layer, and the

rightmost layer the output layer (which, in this example, has only one node). The middle

layer of nodes is called the hidden layer because its values are not observed in the training

set. We also say that our example neural network has 3 input units (not counting the bias

unit), 3 hidden units, and 1 output unit (Neural Networks, 2013).

2.05 Architecture of Artificial Neural Network

There are two Artificial Neural Network topologies − Feedforward and Feedback.

Figure 2.03: Network Layers (Neural Networks, 2013)

Page | 16

(a) Feedforward ANN:

In a Feedforward ANN, the connections

between units do not form cycles. It usually

produces a response to an input quickly.

The information flow is unidirectional. A

unit sends information to other unit from

which it does not receive any information.

There are no feedback loops. They are used

in pattern generation, recognition and

classification. They have fixed inputs and

outputs (Tutorials Point).

(b) Feedback ANN:

Feedback networks can have signals travelling in both

directions by introducing loops in the network. Feedback

networks are very powerful and can get extremely

complicated. Feedback networks are dynamic; their 'state' is

changing continuously until they reach an equilibrium point.

They remain at the equilibrium point until the input changes

and a new equilibrium needs to be found. Feedback

architectures are also referred to as interactive or recurrent,

although the latter term is often used to denote feedback

connections in single-layer organizations (Christos Stergiou).

2.06 The Perceptron: The Fundamentals

The perceptron was first introduced by F.

Rosenblatt in 1958 (Types of Neural Nets).

A perceptron is a unit that computes a single

output from multiple real-valued inputs by

forming a linear combination according to its

input weights and then possibly putting the

Figure 2.04: Feedforward ANN

Figure 2.05: Feedback ANN

Figure 2.06: A Perceptron

Page | 17

output through some non-linear function called the activation function (Multilayer

Perceptron in Python, 2014).

The output of perceptron can be expressed as:

𝑓(𝑥) = 𝐺(𝑊𝑇𝑥 + 𝑏)

Where:

(x) : the input vector;

(W,b) : the parameters of perceptron;

(f) : the non-linear function.

The perceptron is trained (i.e., the weights and threshold values are calculated) based on an

iterative training phase involving training data. Training data are composed of a list of input

values and their associated desired output values. In the training phase, the inputs and related

outputs of the training data are repeatedly submitted to the perceptron.

The perceptron calculates an output value for each set of input values. If the output of a

particular training case is labeled 1 when it should be labeled 0, the threshold value (theta) is

increased by 1, and all weight values associated with inputs of 1 are decreased by 1. The

opposite is performed if the output of a training case is labeled 0 when it should be labeled 1.

No changes are made to the threshold value or weights if a particular training case is correctly

classified (Leverington, 2009).

The learning process in a perceptron is supervised and the net is able to solve basic logical

operations like AND or OR. It is also used for pattern classification purposes.

More complicated logical operations (like the XOR problem) cannot be solved by a

Perceptron (Types of Neural Nets).

2.07 Multi-Layer Perceptron (MLP)

Multilayer Perceptron (MLP) was first introduced by M. Minsky and S. Papert in 1969and

is classified as a type of Artificial Neural Network: the computation is performed using a set

of (many) simple unit with weighted connections between them. Furthermore, there are

learning algorithms to set the values of the weights and the same basic structures (with

different weight values) are able to perform many tasks (Gales, 2015).

Page | 18

It is an extended perceptron and has one or more hidden neuron layers between its input and

output layers. Due to its extended structure, a Multi-Layer Perceptron is able to solve every

logical operation, including the XOR problem (Types of Neural Nets).Intermediate layers

usually have tan hyperbolic (tanh) or the sigmoid function (defined here by a ‘HiddenLayer’

class) as activation function.

The number of hidden layers determines the decision boundaries that can be generated. In

choosing the number of layers, the following considerations are made:

 Multi-layer networks are harder to train than single layer networks.

 A two layer network (one hidden) with sigmoidal activation functions can model any

decision boundary.

Two layer networks are most commonly used in pattern recognition (the hidden layer having

sigmoidal activation functions) (Gales, 2015).

An MLP can be viewed as a logistic regression classifier where the input is first transformed

using a learnt non-linear transformation ϕ. This transformation projects the input data into a

space where it becomes linearly separable. This intermediate layer is referred to as a hidden

layer. A single hidden layer is sufficient to make MLPs a universal approximator

(Multilayer Perceptron, 2016).

The Model

a) Single Layer Multilayer Perceptron

An MLP (Multi Layer Perceptron) with a single hidden layer can be represented graphically

as follows:

Formally, a one-hidden-layer MLP is a

function

𝑓: 𝑅𝐷 → 𝑅𝐿

Where D is the size of input vector x

and L is the size of the output vector

f(x), such that, in matrix notation:

Figure 2.07: Single Layer Multilayer Perceptron

Page | 19

𝑓(𝑥) = 𝐺(𝑏(2) + 𝑊(2) (𝑠(𝑏(1) + 𝑊(1)𝑥)))

With bias vectors b(1), b(2); weight matrices W(1), W(2) and activation functions G and s

(Multilayer Perceptron, 2016).

b) MLP with Multiple Hidden Layers

Multi-layer perceptron allow a neural

network to perform arbitrary mappings.

A 2-hidden layer neural network is shown in

the given figure. The aimis to map an input

vector x into an output y(x). The layersmay

be described as:

 Input layer: Accepts the data vector

or pattern;

 Hidden layers: One or more layers. They accept the output from the previous layer,

weighs them, and pass through a, normally, non-linear activation function;

 Output layer: Takes the output from the final hidden layer, weighs them and possibly

passes through an output non-linearity to produce the target values.

The MLP and many other neural networks learn using an algorithm called backpropagation.

With backpropagation, the input data is repeatedly presented to the neural network. With

each presentation the output of the neural network is compared to the desired output and an

error is computed. This error is then fed back (backpropagated) to the neural network and

used to adjust the weights such that the error decreases with each iteration and the neural

model gets closer and closer to producing the desired output. This process is known as

"training" (Neural Network, 2016).

Applications of MLP:

MLP has been used in a wide area for various applications, all of which can be stratified as

pattern classification, function approximation or prediction. Pattern classification is the

configuration of patterns into groups of patterns having the same set of properties. It is well

Figure 2.08: MLP with Two Hidden Layers

(Neural Network, 2016)

Page | 20

known that MLPs are universal in the sense that they can approximate any continuous non-

linear function arbitrarily well on a compact interval.

As a result, MLP became popular in order to parameterize nonlinear models and classifiers,

often leading to improved results compared to classical, (V. Cherkassky, 1998) MLP has

proved to be a very effective tool for the classification of remote-sensing images. However,

the training of such a classifier, by using data with very different a priori class probabilities

(imbalanced data), is very slow.

It is an effective method which describes a learning technique aimed at speeding up the

training of a MLP also the classification becomes stable (with respect to initial weights) when

applied to imbalanced data (L. Bruzzone, 1997). Various efforts are being made in order to

optimize the fault tolerance of MLP in pattern classification problems. Fault tolerance is a

frequently cited advantage of ANN. SLP was considerably less fault tolerant than any of the

MLPs, including one with fewer adjustable weights (M. D. Emmerson, 1993).

MLP has been applied within the field of air-quality prediction. According to the work of Yi

and Prybutok, MLP helped in predicting ozone concentration on the surface of an industrial

area in North America (J. Yi, 1996). Weather forecasting is a difficult task to be undertaken.

In 1996, Marzban and Stumpf predicted the existence of tornadoes, using MLP. This

approach outperformed other techniques including discriminant analysis, logistic regression

and rule based algorithm (Marzban, 1996). MLP was used for many applications such as

predicting monsoon and rainfall (Ceccatto, 1994), distinguishing clouds and ice or snow in

Polar Regions (R. M. Welch, 1992), interpret satellite imagery for identifying cyclones, war

fronts, and weather conditions (Tag, 1992). MLP can act as a useful tool to implement

various other applications such as: paper currency recognition, the diagnosis of low back pain

and sciatica, heart disease and cancer, stock market prediction, prediction of daily global

solar radiation, handwritten character recognition, image classification, object recognition,

feature extraction and many more (Anil Kumar Goswami, 2014).

2.08 The Perceptron Learning Algorithm

A learning algorithm is an adaptive method by which a network of computing units self-

organizes to implement the desired behavior. This is done in some learning algorithms by

presenting some examples of the desired input-output mapping to the network. A correction

step is executed iteratively until the network learns to produce the desired response. The

Page | 21

learning algorithm is a closed loop of presentation of examples and of corrections to the

network parameters, as shown below:

In some simple cases, the weights

for the computing units can be

found through a sequential test of

stochastically generated numerical

combinations. However, such

algorithms which look blindly for a

solution do not qualify as

“learning”. A learning algorithm

must adapt the network parameters

according to previous experience

until a solution is found, if it exists

(Rojas, 1996).

2.09 Artificial Neural Networks and Gradient Descent Algorithm

Global and Local Minimum

The global minimum is a

theoretical solution with the

lowest possible error. The error

surface itself is a

hyperparaboloid but is seldom

'smooth' as is depicted in the

given figure. Indeed, in most

problems, the solution space is

quite irregular with numerous

'pits' and 'hills' which may

cause the network to settle

down in a 'local minimum'

which is not the best overall

solution.

Figure 2.09: Learning process in a parametric system (Rojas,

1996)

(Rojas, 1996)

Figure 2.10: Global Minimum

Page | 22

Since the nature of the error space cannot be known a priori, neural network analysis often

requires a large number of individual runs to determine the best solution. Most learning rules

have built-in mathematical terms to assist in this process which control the 'speed' (Beta-

coefficient) and the 'momentum' of the learning. The speed of learning is actually the rate of

convergence between the current solution and the global minimum. Momentum helps the

network to overcome obstacles (local minima) in the error surface and settle down at or near

the global minimum.

Gradient Descent Algorithm

Gradient descent is a first-order

optimization algorithm. To find a

local minimum of a function using

gradient descent, one takes steps

proportional to the negative of the

gradient (or of the approximate

gradient) of the function at the current

point. If instead one takes steps

proportional to the positive of the

gradient, one approaches a local

maximum of that function; the

procedure is then known as gradient ascent.

Gradient descent is based on the observation that if the multi-variable function F(x) is defined

and differentiable in a neighborhood of a point a, then 𝐹(𝑥)decreases fastest if one goes from

a in the direction of the negative gradient of 𝐹at a, −∇𝐹(𝑎). It follows that, if

𝑏 = 𝑎 − 𝛾∇𝐹(𝑎)

If γ is small enough, then 𝐹(𝑎) ≥ 𝐹(𝑏). In other words, the term 𝛾∇𝐹(𝑎) is subtracted from

𝑎because we want to move against the gradient, namely down toward the minimum. With

this observation in mind, one starts with a guess 𝑥0for a local minimum of F, and considers

the sequence𝑥0, 𝑥1, 𝑥2, … such that:

𝑋𝑛+1 = 𝑥𝑛 − 𝛾𝑛∇𝐹(𝑥𝑛, 𝑛) ≥ 0,

Figure 2.11: Local and Global Maxima and Minima

(Wikipedia, Maxima and Minima, 2016)

Local and global maxima and minima for cos(3πx)/x,

0.1≤ x ≤1.1

Page | 23

We have:

𝐹(𝑥0) ≥ 𝐹(𝑥1) ≥ 𝐹(𝑥2) ≥ ⋯,

So hopefully the sequence (xn) converges to the desired local minimum. Note that the value

of the step size γ is allowed to change at every iteration. With certain assumptions on the

function F (for example, F convex and ▼F Lipschitz) and particular choices of γ (e.g.,

chosen via a line search that satisfies the Wolfe conditions), convergence to a local minimum

can be guaranteed. When the function F is convex, all local minima are also global minima,

so in this case gradient descent can converge to the global solution.

This process is illustrated in the figure to the right. Here

F is assumed to be defined on the plane, and that its

graph has a bowl shape. The blue curves are the contour

lines, that is, the regions on which the value of F is

constant. A red arrow originating at a point shows the

direction of the negative gradient at that point. Note that

the (negative) gradient at a point is orthogonal to the

contour line going through that point. We see that

gradient descent leads us to the bottom of the bowl, that

is, to the point where the value of the function F is

minimal (Gradient descent, 2016).

2.10 Non Linear Activation Functions

The operation of an artificial neural network is to sum up the product of the associated weight

and the input signal and produce an output or activation function. For the input unit this

activation function is the identity function. The neuron of a particular layer gets the same type

of activation function. In almost all cases, non-linear activation functions are used

(K.Vijayarekha).

Some of the activation functions commonly used for neurons is given below:

Figure 2.12: Illustration of Gradient

Descent (Gradient descent, 2016)

Page | 24

Sigmoid function

Sometimes S shaped functions called Sigmoid

functions or Logistic functions are used as

activation functions which are found useful.

Logistic and hyperbolic tangent functions are

commonly used sigmoid functions. The sigmoid

functions are extensively used in back

propagation neural networks because it reduces

the burden of complication involved during

training phase (K.Vijayarekha).

Tan Hyperbolic Function

Though the logistic sigmoid has a

nice biological interpretation, it turns

out that the logistic sigmoid can cause

a neural network to get “stuck” during

training. This is due in part to the fact

that if a strongly-negative input is

provided to the logistic sigmoid, it

outputs values very near zero.

Since neural networks use the feed-

forward activations to calculate parameter gradients, this can result in model parameters that

are updated less regularly than we would like, and are thus “stuck” in their current state.

An alternative to the logistic sigmoid is the hyperbolic tangent, or tanh function:

𝜕 tanh(𝑧) =
sinh(𝑧)

cosh(𝑧)
,

 =
𝑒𝑧− 𝑒−𝑧

𝑒𝑧+ 𝑒−𝑧

Like the logistic sigmoid, the tanh function is also sigmoidal (“s”-shaped), but instead outputs

values that range (-1, 1). Thus, strongly negative inputs to the tanh will map to negative

outputs. Additionally, only zero-valued inputs are mapped to near-zero outputs. These

properties make the network less likely to get “stuck” during training (Stansbury, 2016).

Figure 2.13: Sigmoid Function (Weisstein, Sigmoid

Function, 2016)

Figure 2.14: Graphical Representation of the Tan Hyperbolic

Function (Weisstein, Hyperbolic Tangent, 2016)

Page | 25

2.11 Learning Strategies in Neural Network

ANNs are capable of learning and they need to be trained. There are several learning

strategies:

 Supervised Learning: It involves a teacher that is scholar than the ANN itself. For

example, the teacher feeds some example data about which the teacher already knows

the answers.

 Unsupervised Learning: It is required when there is no example data set with known

answers. For example, searching for a hidden pattern. In this case, clustering i.e.

dividing a set of elements into groups according to some unknown pattern is carried

out based on the existing data sets present.

 Reinforcement Learning: This strategy built on observation. The ANN makes a

decision by observing its environment. If the observation is negative, the network

adjusts its weights to be able to make a different required decision the next time.

2.12 Learning Mechanisms in NN

There are five basic learning mechanisms in Neural Network:

1. Error Correction

Learning

In this mechanism, the learning

takes place by iteratively finding

out the error and consistently

adjusting the weights such that at

the last iteration, the error is zero. It

includes a step-by-step adjustment

until system reaches steady state

and the synaptic weights are

stabilized.

Thus, at time step ‘n’, the

difference between the desired

output via input ‘k’ (dk) and the

Figure 2.15: Illustration of Error Correction Learning

(Bennamoun)

Page | 26

actual output 𝑦𝑘(𝑛) will result in the error (𝑒𝑘):

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛)

The cost function′𝐸(𝑛)′or the ‘Index of Performance’ can be formulated using:

𝐸(𝑛) = 1
2⁄ ∑ 𝑒2(𝑛)

Minimization of this error can be done using the ‘Widrow-Hoff Rule’ or ‘Delta Rule’.

∆𝑊𝑘𝑗(𝑛) = Ƞ𝑒𝑘(𝑛). 𝑥𝑗(𝑛)

Where:

Ƞ is the learning rate.

Thus, after correction, the formula for the updated synaptic weight will be as follows:

𝑊𝑘𝑗(𝑛 + 1) = 𝑊𝑘𝑗(𝑛) + ∆𝑊𝑘𝑗(𝑛)

Here the adjustment is proportional to the product of error signal and the input signalerror-

correction learning is local. It is the learning rate η that determines the stability or the

convergence.

2. Memory Based Learning

In memory-based learning, all (or most) of the past experiences are explicitly stored in a large

memory of correctly classified input-output examples:

{(𝑥𝑖, 𝑑𝑖)}𝑖=1
𝑁

Where xi denotes an input vector and didenotes the corresponding desired response. When

classification of a test vector xtest (not seen before) is required, the algorithm responds by

retrieving and analyzing the training data in a “local neighborhood” of xtest.

All memory-based learning algorithms involve 2 essential Ingredient (which make them

different from each other):

Page | 27

 Criterion used for defining local neighbor of xtest.

 Learning rule applied to the training examples in local neighborhood of xtest.

Nearest Neighbor Rule (NNR): When we feed a new vector �⃑�𝑡𝑒𝑠𝑡 , it finds, from the

memory, which of these memories is going to be the closest to the new vector. The Euclidean

distance is found from �⃑�𝑡𝑒𝑠𝑡 and each �⃑�𝑖. The vector 𝑿𝑁
′ ∈ {𝑿0, 𝑿1, 𝑿2, … , 𝑿𝑁} is the nearest

neighbor of 𝑿𝑡𝑒𝑠𝑡 if:

𝑚𝑖𝑛𝑖𝑑(�⃑�𝑖, �⃑�𝑡𝑒𝑠𝑡) = 𝑑(�⃑�𝑁, �⃑�𝑡𝑒𝑠𝑡)

Where 𝑿𝑁
′ is the class of 𝑿𝑡𝑒𝑠𝑡. The corresponding d is going to be the response for �⃑�𝑡𝑒𝑠𝑡

(Bennamoun).

k-Nearest Neighbor Rule: It is a variant of the Nearest Neighbor Rule and identifies the k

classified patterns that lay nearest to �⃑�𝑡𝑒𝑠𝑡 for some integer k. Also, �⃑�𝑡𝑒𝑠𝑡is assignedto the

class that is most frequently represented in the k nearest neighbors to �⃑�𝑡𝑒𝑠𝑡.

Let us assume some patterns to be ‘0’ and ‘1’. Thus after arranging these patterns we gain the

following graph:

In the given graph, we see the distribution of patterns

‘0’ and ‘1’. There is a test pattern (marked in red)

present which has to be classified. Ideally this test

pattern should be classified as ‘0’. However, due to

the presence of an ‘outlier’(in this case pattern ‘1’,

lying closest to the test pattern), the test pattern will

be classified as belonging to pattern ‘1’ which will

lead to faulty classification .

To overcome this flaw, the k-Nearest Neighborhood

rule is used where not only the nearest neighbor but the nearest neighborhood is identified.

3. Hebbian Learning

According to Hebb, “When an axon of cell A is near enough to excite a cell B and

repeatedly or persistently takes place in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased” (Hebb, 1949).

Figure 2.16: Outliers: Cause of Faulty

Classification

Page | 28

In other words:

1. If two neurons on either side of a synapse (connection) are activated

simultaneously (i.e. synchronously), then the strength of that synapse is

selectively increased.

2. If two neurons on either side of a synapse are activated asynchronously, then that synapse

is selectively weakened or eliminated so that chance coincidences do not build up

connection strengths.

Thus, if the cross product of output and input (or correlation) is positive, it results in an

increase of the weight, otherwise the weight decreases. It can be seen that the outputis

strengthened in turn for each input presented.

The Hebbian synapse is characterized by the following characteristics:

 Time dependent:

o Depend on exact time of occurrence of two signals

 Local:

o Locally available information is used

 Interactive mechanism:

o Learning is done by two signal interaction

 Conjunctional or correlational mechanism:

o Co-occurrence of two signals

Hebbian learning is found in Hippocampus of the human brain.

4. Competitive Learning:

This is an unsupervised network training and is applicable for an ensemble of neurons (e.g.

a layer of p neurons), not for a single neuron. In this type of learning, the output neurons of

NN compete to become active. Only a single neuron is active at any one time. Neurons learn

to specialize on ensembles of similar patterns. Therefore, they become feature detectors.

Competitive learning is a rule based on the idea that only one neuron from a given iteration in

a given layer will fire at a time. Weights are adjusted such that only one neuron in a layer, for

instance the output layer, fires. Competitive learning is useful for classification of input

patterns into a discrete set of output classes. The “winner” of each iteration, element i*, is the

element whose total weighted input is the largest (Artificial Neural Networks/Competitive

Page | 29

Learning, 2013). Using this notation, one example of a competitive learning rule can be

defined mathematically as:

𝑤𝑖𝑗[𝑛 + 1] = 𝑤𝑖𝑗[𝑛] + ∆𝑤𝑖𝑗[𝑛]

∆𝑤_𝑖𝑗 = (
Ƞ(𝑥_𝑖 − 𝑤_𝑖𝑗) 𝑖𝑓 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
)

Competitive learning takes place in a context of sets of hierarchically layered units. Units are

represented in the diagram as dots. Units may be active or inactive. Active units are

represented by filled dots, inactive ones by open dots. In general, a unit in a given layer can

receive inputs from all of the units in the next lower layer and can project outputs to all of the

units in the next higher

layer. Connections between

layers are excitatory and

connections within layers

are inhibitory. Each layer

consists of a set of clusters

of mutually inhibitory units.

The units within a cluster

inhibit one another in such a

way that only one unit per

cluster may be active. We

think of the configuration of

active units on any given

layer as representing the

input pattern for the next

higher level. There can be an

arbitrary number of such

layers. A given cluster

contains a fixed number of

units, but different clusters

can have different numbers of units (Zipser, 1985).

There are many variants to the basic competitive learning model. Von der Malsburg (von

der Malsburg, 1973), Fukushima (Fukushima, 1975), and Grossberg (Grossberg, 1976)

Figure 2.17: Architecture of the competitive learning mechanism

(Zipser, 1985).

Page | 30

among others, have developed competitive learning models. In this section we describe the

simplest of the many variations. The version we describe was first proposed by

Grossberg (Grossberg, 1976) and is the one studied by Rumelhart and Zipser. This version

of competitive learning has the following properties:

 The units in a given layer are broken into several sets of non-overlapping clusters.

Each unit within a cluster inhibits every other unit within a cluster. Within each

cluster, the unit receiving the largest input achieves its maximum value while all other

units in the cluster are pushed to their minimum value. We have arbitrarily set the

maximum value to 1 and the minimum value to 0.

 Every unit in every cluster receives inputs from all members of the same set of input

units.

 A unit learns if and only if it wins the competition with other units in its cluster. The

winner that wins the competition is called “winner-takes-all”.

 A stimulus pattern Sj consists of a binary pattern in which each element of the pattern

is either active or inactive. An active element is assigned the value 1 and an inactive

element is assigned the value 0.

 Each unit has a fixed amount of weight (all weights are positive) that is distributed

among its input lines. The weight on the line connecting to unit i on the upper layer

from unit j on the lower layer is designated wij. The fixed total amount of weight for

unit j is designated ∑jwij = 1. A unit learns by shifting weight from its inactive to its

active input lines. If a unit does not respond to a particular pattern, no learning takes

place in that unit. If a unit wins the competition, then each of its input lines gives up

some portion ϵ of its weight and that weight is then distributed equally among the

active input lines. Mathematically, this learning rule can be stated

∆𝑤𝑖𝑗 = (

0 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑙𝑜𝑠𝑒𝑠 𝑜𝑛 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑘

∈
𝑎𝑐𝑡𝑖𝑣𝑒𝑗𝑘

𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑘
− ∈ 𝑤𝑖𝑗 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑤𝑖𝑛𝑠 𝑜𝑛 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑘

)

Where activejk is equal to 1 if in stimulus pattern Sk, unit j in the lower layer is active and is

zero otherwise, and nactivek is the number of active units in pattern Sk (thus,nactivek =

∑jactivejk) (Competitive Learning).

5. Boltzmann Learning

Page | 31

Boltzmann learning is a stochastic learning algorithm, derived from statistical mechanics. It

is similar to error-correction learning and is used during supervised training. In this

algorithm, the state of each individual neuron, in addition to the system output, are taken into

account. In this respect, the Boltzmann learning rule is significantly slower than the error-

correction learning rule. Neural networks that use Boltzmann learning are called Boltzmann

machines.

Boltzmann learning is similar to an error-correction learning rule, in that an error signal is

used to train the system in each iteration. However, instead of a direct difference between the

result value and the desired value, we take the difference between the probability

distributions of the system (Artificial Neural Networks/Boltzmann Learning, 2010).

The Boltzmann machine is the Neural Network basis of Boltzmann learning. A Boltzmann

machine is a network of symmetrically connected, neuron-like units that make stochastic

decisions about whether to be on or off. Boltzmann machines have a simple learning

algorithm (G. E. Hinton, 1983) that allows them to discover interesting features that represent

complex regularities in the training data (Hinton, 2007).

A graphical representation of a Boltzmann

machine with a few weights labeled. Each

undirected edge represents dependency and

is weighted with weight wij. In this example

there are 3 hidden units (blue) and 4 visible

units (white).

A Boltzmann machine, like a Hopfield network, is a network of units with an "energy"

defined for the network. It also has binary units, but unlike Hopfield nets, Boltzmann

machine units are stochastic. The global energy, 𝐸, in a Boltzmann machine is identical in

form to that of a Hopfield network:

Figure 2.18: Boltzmann Machine

(Boltzmann machine, 2016)

Page | 32

𝐸 = − (∑ 𝑤𝑖𝑗𝑠𝑖𝑠𝑗

𝑖<𝑗

+ ∑ 𝜃𝑖𝑠𝑖

𝑖

)

Where:

 𝑤𝑖𝑗: The connection strength between unit j and unit i.

 𝑠𝑖: The state, 𝑠𝑖 ∈ {0, 1},

 𝜃𝑖: The bias of unit i in the global energy function. (− 𝜃𝑖is the activation threshold for

the unit.)

The connections in a Boltzmann machine have two restrictions:

 𝑤𝑖𝑖 = 0 ∀𝑖. (No unit has a connection with itself.)

 𝑤𝑖𝑗 = 𝑤𝑗𝑖 ∀𝑖, 𝑗. (All connections are symmetric.)

Often the weights are represented in matrix form with a symmetric matrix W, with zeros

along the diagonal.

The units in the Boltzmann Machine are divided into 'visible' units, V, and 'hidden' units, H.

The visible units are those which receive information from the 'environment', i.e. our training

set is a set of binary vectors over the set V. The distribution over the training set is denoted

as𝑃+(𝑉).

Remarkably, this learning rule is fairly biologically plausible because the only information

needed to change the weights is provided by "local" information. That is, the connection (or

synapse biologically speaking) does not need information about anything other than the two

neurons it connects (Boltzmann machine, 2016).

2.13 Backpropagation Algorithm

The Backpropagation Algorithm is a learning algorithm used by neural nets with supervised

learning. It is a special form of the delta learning rule (BackPropagation). The back

propagation algorithm was originally introduced in the 1970s, but its importance was not

fully appreciated until a famous 1986 paper by David Rumelhart, Geoffrey Hinton and

Ronald Williams. The paper describes several neural networks where backpropagation

works far faster than earlier approaches to learning, making it possible to use neural nets to

Page | 33

solve problems which had previously been insoluble. Today, the backpropagation algorithm

is the workhorse of learning in neural networks (Nielsen, 2015).

The backpropagation algorithm trains a given feed-forward multilayer neural network for a

given set of input patterns with known classifications. When each entry of the sample set is

presented to the network, the network examines its output response to the sample input

pattern. The output response is then compared to the known and desired output and the error

value is calculated. Based on the error, the connection weights are adjusted. The

backpropagation algorithm is based on Widrow-Hoff delta learning rule in which the

weight adjustment is done through mean square error of the output response to the sample

input (Velasquez, 1998). The set of these sample patterns are repeatedly presented to the

network until the error value is minimized (Kawaguchi, 2006).

In this project, a combination of Multilayer Perceptron along with Backpropagation will be

used to train and classify the available data to produce an LULC map with the help of

training sets that have gone through Feature Scaling.

2.14 Working with UAV acquired data

Remotely gathered data is available from a range of sources (Satellite and Aerial

Photography) and data collection techniques and is often the only type of data that is not

always easily found within the public domain. This is largely due to the fact that most of this

data is acquired by equipment that is expensive to build and maintain.

Despite its high bandwidth, coverage over a large geographical area and proven to be cheaper

over long distances (Principles of Data Communications: Media Characteristics), satellite

images have several drawbacks. Some are listed as below:

 Accessibility: Apart from a few selected satellites, most of the high resolution

satellite data have to be purchased or a request has to be made for it to be accessible

for educational purposes.

 Affordability: If required by organizations for specific applications, then purchasing

satellite images seems reasonable. However, for research and educational purposes,

purchasing the same does not seem viable by any means.

Page | 34

 Resolution: This point overlaps with accessibility;such that higher resolution data is

usually unavailable free of cost and the data which is available has very poor

resolution, which may not serve the purpose.

 Time factor: At times even if individuals opt for purchase of satellite images, the

time taken to place the order as well as receiving it eventually places a lot of

hindrances in the progress of the project for which it is required. Also, most satellites

have another disadvantage of revisit time, such that they can only visit a certain

geographical area after a span of time.

 Noise and Interference: Data wise, satellite images suffer from noise such as

speckle, cloud cover, haze, glare and dust. Due to this data has to go through

atmospheric and radiometric corrections for them to be useful.

However, in recent times, due to the emergence of the UAV or the Unmanned Aerial

Vehicle, popularly known as the Drone, these data issues have largely been taken care of.

They may not be cover as much area as a satellite may cover in flight but they ensure

frequent revisits, easy availability and high resolution data (Up to an accuracy of 0.7cm at a

flying altitude of 50m, PrecisionHawk Lancaster Rev 5) which may have diverse applications

in various different domains, including agriculture, mining, urban planning, defense, energy

and utilities, emergency response and forestry to name a few.

In addition, they may even

venture into areas which may

otherwise prove to be

hazardous for human beings.

They have the capability of

staying in the air for

prolonged period of time,

performing a precise,

repetitive raster scan of a

region, day-after-day, night-

after-night in complete

darkness, or, in fog, under

computer control, performing a geological survey, visual or thermal imaging of a region and

even measuring cell phone, radio, or, TV coverage over any terrain (UAVS, 2016).

Figure 2.19: PrecisionHawk Lancaster Rev 5 (Lancaster, 2016)

Page | 35

The data being used for

this project has been

acquired by

PrecisionHawk

Lancaster Rev 3 in 2015

(Further details about the

data used in this project

have been attached in

Appendix-I and

Appendix-II of this

project). Acclaimed as Market Leaders in the Unmanned Aerial Platform based Survey

Solutions Industry, PrecisionHawk has one of kind equipment and a variety of field

swappable plug-and-play sensors which include visual, thermal, multispectral and LIDAR

sensors. It is the first to have LIDAR sensor on aerial platform in India.

Claimed by many as “the future of data collection”, UAV systems and services are here to

stay. With Amazon (Stevenson, 2016) and Dominos (Sachdeva, 2016) trying their best to

integrate UAV service delivery for extending their services, today the drone market is

infectiously moving from the defense domain to civilian applications and have the capability

to take over the aerial data market in a big way.

 METHODOLOGY

3.01 Outline

Figure 2.20: PrecisionHawk Lancaster Rev 3 (Reich, 2015)

Page | 36

This section describes the overall methodology of development of the plugin named ‘MLP’

developed based on ANN approach. Here, training and testing dataset have been created

keeping in mind the objective of LULC classification.

A FeedForward Multi Layer Perceptron has been implemented and backpropagation

algorithm has been used to provide training to the training datasets. As mentioned earlier,

Backpropagation is a well-known algorithm for learning of ANN.

The basic structure of the network

consists of a three layer neural

network, namely an input layer

comprising of two nodes, a hidden

layer comprising of three nodes

and one output layer having one

node, i. e. the classified land use

land cover map.

In all neural networks the three

fundamentals that one must follow

are:

1. Build it: Create the skeletal structure of the network with all nodes and their

connections well-defined for training.

2. Train it: Using a suitable training algorithm, train the network to perform certain

function.

3. Test it: Test the trained network on the testing dataset.

Similarly, the MLP tool, too, uses the same fundamentals for its formation. These modules

will be explained in greater details further in this document.

Figure 3.02: Multi Layer Perceptron for MLP

Page | 37

Figure 3.03: Work Flow of the Multi Layer Perceptron in MLP Tool

The above figure depicts a block diagram of the MLP tool consisting of various components

i.e. MLP Training, MLP Testing and MLP Working blocks. It shows the flow of data and

connectivity among various sub modules of MLP.

3.02 Modules

The development of the tool can be divided into four basic modules. They are as follows:

1. Python Tool Development

a. User Interface (UI) of the Tool:

The basic UI of the tool will be designed

keeping in mind the following criteria:

 Ease of Use

 Clarity

 Integration with the software.

b. Logic Development: The code for

the tool for using Multilayer Perceptron as

the Artificial Neural Network for

Python Tool
Development

Training Sets

Accuracy
Assessment

Page | 38

classification of the dataset is the main module. This module governs the behavior of

the tool.

2. Training Set

Another important module in this project is the building of the training set. It has a great

bearing on the results because its accuracy will determine the accuracy of the datasets that

will be classified using this tool. The more intricate the training, the better the results will be.

3. Accuracy Assessment

In the end, after testing the tool, the resultant classified dataset will be assessed for its

accuracy using accuracy assessment techniques such as the Kappa Accuracy Test or the

Confusion Matrix.

3.03 Software

The above mentioned modules will be developed using several software, namely:

1. Python Tool Development: This can further be

divided into the following:

a. UI Design: The UI of the tool has been

designed in “QT Creator IDE” which is a fully-stocked

cross-platform integrated development environment for easy

creation of connected devices, UIs and applications (QT

Creator IDE).

b. Logic development: Using the “NumPy”

library of Python, the logic will be developed in the

Notepad++ text editor. Python is a programming language

that lets you work more quickly and integrate your systems

more effectively (Python).

2. Building Training Sets: The training sets for training

the dataset for accurate classification using artificial neural

network will be built in QGIS Wien 2.8.7. QGIS is a cross-

platform free and open-source desktop geographic

information system (GIS) application that provides data

viewing, editing, and analysis (Wikipedia, QGIS).

Python Tool

Training Sets

Accuracy Test

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Geographic_information_system
https://en.wikipedia.org/wiki/Geographic_information_system

Page | 39

3. Accuracy Assessment: The accuracy of the dataset will be evaluated using a well-

known accuracy test such as the “Kappa Accuracy Test”.

3.04 Development

1. Python Tool Development: The development of the tool will be elaborated below.

a. UI Design: At first, the basic plugin was created in Quantum GIS 2.7.8 Wien

version. For this several initial steps had to be performed, as shown below:

Python Bindings for Qt

Since the plugin was being developed in Python, the python bindings for Qt

needed to be installed. For building plugins, the pyrcc4 command-line tool was

needed. Since the tool was developed in a Windows platform, the OSGeo4W

network installer was downloaded and Express Desktop Install was chosen.The

QGIS package was installed. After installation, the pyrcc4 tool could be accessed

via the OSGeo4W Shell.

A Text Editor or a Python IDE

Any kind of software development requires a good text editor or an IDE (Integrated

Development Environment). For our tool, Notepad++ editor on Windows was used.

Plugin Builder plugin

This helpful QGIS plugin creates all the necessary files and the boilerplate code

for a plugin. This plugin was installed and used.

Plugins Reloader plugin

This is another helper plugin which allows iterative development of plugins.

Using this plugin, one can change the plugin code and have it reflected in QGIS

without having to restart QGIS every time. Even this plugin was installed.

Page | 40

Procedure

 On opening QGIS, the ‘Plugin Builder’ was installed from the already

available plugins. The Plugin Builder creates a QGIS plugin template for

use as a starting

point in plugin

development. Once

installed, it can be

found on the list of

plugins in our

‘Plugin’ drop down

menu. Using it, the

basic framework of a

plugin can be

created.

 On clicking on the Plugin Builder, a window asking for details will appear.

The Class name will be the name of the Python Class containing the logic

of the plugin. This will also be the name of the folder containing all the

plugin files. The Plugin name is the name under which the plugin will

appear in the Plugin Manager. A description can be added in the

Description field. The Module name will be the name of the main python

file for the plugin. The version numbers were left to default values. The

Text for menu item value will be how the users will find the plugin in

QGIS menu. Name and email address was specified in the appropriate

fields. The Menu field will decide where the plugin item is added in QGIS.

Since our plugin is for raster data,Raster was selected. Next, a directory for

the plugin had to be chosen.

c:\Users\username\.qgis2\python\plugins

Browsing to the QGIS python plugin directory on your computer the

respective folder was created. A confirmation dialog box appeared,

Figure 3.03: Plugin Builder

Page | 41

confirming the formation of the plugin. This led to the formation of the

basic tool and its supporting files.

 Before using the newly created plugin, the ‘resources.qrc’ file that was

created by Plugin Builder was compiled by launching the OSGeo4W Shell.

 By browsing to the plugin directory where the output of Plugin Builder

was created and typing ‘make’, the pyrcc4 command was run that

wasinstalled as a part of the Qt bindings for Python.

 Here is the first look of the created plugin:

On clicking on this plugin, as of now, a blank non-functional window will

be displayed shown below:

Figure 3.05: MLP Classifier Plugin: First Look

Figure 3.04: OSGeo4WShell

Page | 42

 In order to design the window of the MLP Classifier plugin, the software

‘QT Creator’ was used. The already created file

‘mlp_classifier_dialog_base.ui’ was opened from the repository of files

created by the Plugin Builder.

Thus, the end product is as follows:

Figure 3.07: The MLP Tool

b. Logic Development

The logic for the MLP tool has been developed using the following libraries:

 PyBrain: PyBrain or Python-Based Reinforcement Learning, Artificial

Intelligence and Neural Network Library, is a modular Machine Learning

Library for Python. Its goal is to offer flexible, easy-to-use yet still

powerful algorithms for Machine Learning Tasks and a variety of

Figure 3.06: MLP Classifier: Non-Functional

Window

Page | 43

predefined environments to test and compare your algorithms (Welcome

to Pybrain).

 Matplotlib: Matplotlib is a python 2D plotting library which produces

publication quality figures in a variety of hardcopy formats and interactive

environments across platforms. matplotlib can be used in python scripts,

the python and ipython shell (ala MATLAB®* or Mathematica®), web

application servers, and six graphical user interface toolkits (Matplotlib).

 NumPy: NumPy is the fundamental package for scientific computing with

Python. It contains among other things:

 A powerful N-dimensional array object

 Sophisticated (broadcasting) functions

 Tools for integrating C/C++ and Fortran code

 Useful linear algebra, Fourier transform, and random number

capabilities (NumPy).

As mentioned above, PyBrain facilitates its users to develop neural networks with

great ease. PyBrain, as its written-out name already suggests, contains algorithms

for neural networks, for reinforcement learning (and the combination of the two),

for unsupervised learning, and evolution.

The MLP Tool

For this tool, we created a FeedForward model of Multi Layer Perceptron with

Backpropagation training algorithm.

The FeedForward model, as mentioned earlier, consists of three layers, namely an

input layer comprising of two nodes, a hidden layer comprising of three nodes

and one output layer having one node, i. e. the classified land use land cover

map.

The number of nodes in every layer was determined in the following manner:

http://ipython.org/
http://matplotlib.org/#ftn.matlab

Page | 44

 Nodes in the input layer: The two nodes in the input layer comprise of

the two indices used for training the network, i. e., Green-Red Vegetation

Index (GRVI) and Urban Index (UI).

 Nodes in the hidden layer: The number of nodes in this layer has been

determined based on the number of classes that the LULC map will be

classified into, i. e., three classes, vegetation, urban and mixed classes.

 Nodes in the output layer: The node in this layer is the output classified

LULC map which will be the product after the testing dataset has been

trained by the MLP network.

The Network

By importing the ‘FeedForward’ from the PyBrain library, the network has been

formed. The three different layers in the network have been formed by importing

the ‘LinearLayer’ class for the input and output layers and the ‘SigmoidLayer’

class for the hidden layer. In order to establish a connection between these layers,

the ‘FullConnection’ class has been imported.

The Training

The training set has been formed by building datasets after importing the

‘SupervisedDataSet’ class. While forming these datasets, the ranges of every class

have been specified such that:

Here, the range of every class is mentioned and the target output is also specified.

Once the training dataset has been formed, we train the network with the same so

as to enable the MLP network to accurately classify the raw ortho image into the

aforementioned three distinct classes. To train, we use the

‘trainUntilConvergence’ method which will ensure that the network keeps on

Page | 45

training until it achieves the global minimum, or the lowest error rate with

reference to the given training and target datasets.

Once the training is done, we print a line graph showing the error rates of our

network. This is how it appears:

Figure 3.08: Graphical Representation of the Achieved Error Rate after Training

From the above graph we, can visualize that the error rate converges at 0 after 141 iterations.

Now, the net is ready for testing.

The Testing

Once the training is complete and a desirable error rate is achieved, the trained

network is tested using ‘n.activate()’ method. This causes the trained network to

classify the given raw ortho image into the three different classes.

2. Building Training Sets

The training setshave been built in QGIS Wien 2.8.7. Several small patches of the UAV

acquired dataset have been taken for the same reason. Given below are the steps followed

for building the training sets:

 Using the Green-Red Vegetation Index (GRVI), three distinct classes could be

defined, namely, the urban section comprising of the settlements and the roads,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

Error Rate

Page | 46

the vegetation class and the mixed class. The formula to compute GRVI has been

given as follows:

𝐺𝑅𝑉𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑

 Similarly, the Urban Index (UI) makes use of the red and blue band of the RGB

sensor data and provides distinct differentiation between the vegetation, urban

segments and the mixed class. The formula to compute UI is given as follows:

𝑈𝐼 =
𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒

 Using these two indices, the three major classes have been formed and fed to the

training dataset.

Given below are the resulting GRVI and UI rasters after being applied to the orthomosaic of

the UAV acquired data.

Figure 3.09: Green-Red Vegetation Index

Page | 47

Figure 3.10: Urban Index

These values have further been normalized using the Min-Max Normalization Technique,

which applies the following formula:

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

Thereafter, we get these values within a range of 0 to 1.

Thus, the three classes and their respective ranges have been given below:

Table 3.01: Ranges of Classes

Index Vegetation Mixed Urban

 Minimum Maximum Minimum Maximum Minimum Maximum

GRVI -0.0067 0.0487 -0.0067 -0.0517 -0.0517 -0.4013

UI 0.2257 0.8541 0.0276 0.1408 -0.5894 0.0276

Class 0 1 2

Page | 48

3. Accuracy Assessment

At last we test the accuracy of our MLP tool using the ‘Kappa Accuracy Test’. Cohen's

kappa coefficient is a statistic which measures inter-rater agreement for qualitative

(categorical) items. It is generally thought to be a more robust measure than simple percent

agreement calculation, since κ takes into account the agreement occurring by chance.

Page | 49

RESULT

After running the raw dataset through the MLP tool the results that have been acquiredare as

follows:

Figure 4.01: Classification of UAV Acquired Dataset with the MLP Tool

 Figure 4.02: Manually Classified LULC Map

As seen above, with the increase in iterations, the accuracy of classes made by the MLP tool

increases. As such we ran the dataset twice through the tool; once with 50 iterations and once

with 100 iterations. As the map above denotes, the one with 100 iterations came closest to the

one which had been classified manually. Given below is a graph showing the pixel counts in

every case:

Legend

 Vegetation Class

 Mixed Class

 Urban Class

With 50 Iterations With 100 Iterations

Page | 50

Figure 4.03: Bar Graph showing the Pixel Count in 50 Iterations, 100 Iterations and Manually

Classified LULC Map

Table 4.01: Pixel Count

 Manual

Classification

50

Iterations

100

Iterations

Vegetation 3320 2471 4927

Mixed 6081 8337 6160

Urban 2237 830 551

Thus even through the pixel count we can see that the classification done by the MLP tool in

100 iterations comes closer to the manually classified LULC map as compared to the one

with 50 iterations.

Hence, we can say that with greater number of iterations we can increase the accuracy

further.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Vegetation Mixed Urban

P
ix

el
 C

o
u

n
t

Class

Manual

50 Iterations

100 Iterations

Page | 51

DISCUSSION

With the main goal being removal of manual intervention in the formation of Land Use Land

Cover Maps, the MLP tool has by far sorted out a majority of this issue. As shown in the

previous section, the classification results have been fairly accurate. Of course, there is vast

scope in improvement of its performance and quality. This can be ensured further with

intense training of our training sets and more sophisticated neural network structure. For this,

more number of training sets will have to be fed and classes will have to be defined in greater

detail.

Let us look into the advantages that the GIS industry can plough from this tool.

 Time efficient: As is always the case, the LULC map is not an end product. It is

further utilized and processed to yield a number of thematic maps. Thus, by

accelerating the production of this very product, the production of other products

dependent on it can also be accelerated to a greater extent. Hence, saving valuable

time.

 Scope for increased accuracy: With a much more intense training net, the

classification can attain high accuracy results. This will further improve the quality

and also increase its productivity.

 Set standards for classification: As mentioned in the introduction of this document,

one of the greatest disadvantages of manual creation of the LULC map is the differing

standards of classification due to differences in individual understanding and

knowledge, this can be easily overcome by the MLP tool. Thus, ensuring uniformity

and reliability.

 Increased reproducibility: As it is a neural network that will be classifying the

images and giving the outputs, scope of reproducibility of the LULC map of the same

area can be increased greatly. This, too, will help in standardization and quality check

of the maps.

Further, using Black Box Optimization, the problems of over fitting can be overcome,

ensuring a very efficient net that solves the classification problem.

Page | 52

CONCLUSION

The MLP tool by far, has achieved what it had set forth. However, there is a vast scope for

improvement, innovation and optimization for this tool. Backed with Artificial Neural

Network, this tool will, in the near future, not only be capable of resolving the resounding

LULC classification problems, but will also be able to perform image recognition, feature

extraction and pattern recognition.

Keeping what we have covered so far in the functionalities of this tool, I would further go on

to say that there is a lot in store for this tool for its future prospects. A few could be as

follows:

 Solve real-life problems: With the ability to do feature extraction, this tool could

help environmentalists and miners in a great way.

 Ease of use for the user: The user need not be an expert in Artificial Neural

Network. All that will be required from his end would be an input image and with just

a few clicks, he will be able to produce an LULC map, which would have otherwise

taken him at least 2 days to produce.

 Integration with all GIS software: As of now, this tool is only available on QGIS

Wien 2.8.7. However, its integration with not only all versions of QGIS but also with

different GIS software such as the ArcMap, ERDAS and ENVI.

Thus, with these future prospects in mind, I will be continuing with the development of this

tool to make it even more progressive, practical and easier to use.

Page | 53

REFERENCES

1. Anil Kumar Goswami, S. G. (2014). Automatic Object Recognition from Satellite

Images using Artificial Neural Network. International Journal of Computer

Applications .

2. Artificial Neural Networks Technology. (n.d.). Retrieved from DOD DACS Home

Page: http://psych.utoronto.ca/users/reingold/courses/ai/cache/neural4.html

3. Artificial Neural Networks/Boltzmann Learning. (2010, November 2). Retrieved from

WikiBooks:

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Boltzmann_Learning

4. Artificial Neural Networks/Competitive Learning. (2013, February 3). Retrieved from

WikiBooks:

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Competitive_Learning

5. BackPropagation. (n.d.). Retrieved from http://rfhs8012.fh-

regensburg.de/~saj39122/jfroehl/diplom/e-g.html#BackPropagation

6. Bennamoun, P. M. Neural Computation.

7. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press.

8. Boltzmann machine. (2016, March 11). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Boltzmann_machine

9. Ceccatto, H. D. (1994). Predicting Indian monsoon rainfall: a neural network

approach. Climate Dynamics, vol. 10 .

10. Christos Stergiou, D. S. Neural Networks.

11. Competitive Learning. (n.d.). Retrieved from

https://web.stanford.edu/group/pdplab/pdphandbook/handbookch7.html

12. D. E. Rumelhart, G. E. (1985). Learning internal representations by error

propagation. ICS Report 8506,California University, San Diego, La Jolla, Institute for

Cognitive Science.

13. D. E. Rumelhart, J. L. (1986). Parallel Distributed Processing: Explorations in the

Microstructure of Cognition. Cambridge, MA: The MIT Press, vol. 1.

14. Erdas Imagine . (n.d.). Retrieved from DataONE: https://www.dataone.org/software-

tools/erdas-imagine

15. Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. In

K. Fukushima, Biological Cybernetics.

Page | 54

16. G. E. Hinton, a. T. (1983). Optimal Perceptual Inference. In a. T. G. E. Hinton,

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.

Washington DC.

17. Gales, M. (2015). Multi-Layer Perceptrons. University of Cambridge.

18. Gradient descent. (2016, February 7). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Gradient_descent

19. Grossberg, S. (1976). Adaptive pattern classification and universal recoding: Part I:

Parallel development and coding of neural feature detectors. In S. Grossberg,

Biological Cybernetics.

20. Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. NY: Macmillan,

Phi Learning Pvt. Ltd.

21. Hinton, G. E. (2007). Boltzmann machine. Retrieved from Scholarpedia:

http://www.scholarpedia.org/article/Boltzmann_machine

22. Hu, J. (2013, April 26). About Data Mining. Retrieved from About Data Mining:

http://www.aboutdm.com/2013/04/history-of-machine-learning.html

23. J. Vieira, F. M. (1997). Neuro-Fuzzy Systems: A Survey. A Study on Video Browsing

Strategies, Technical Report, University of Maryland at College Park.

24. J. Yi, R. P. (1996). A neural network model forecasting for prediction of maximum

ozone concentration in an industrialized urban area. In Environmental Pollution, vol.

92 no. 3.

25. K.Vijayarekha, D. (n.d.). Activation Functions.

26. Kawaguchi, K. (2006). Backpropagation Learning Algorithm.

27. L. Bruzzone, S. B. (1997). Classification of imbalanced remote-sensing data by neural

networks. In Pattern Recognition Letters, vol. 18 no. 11.

28. Lancaster. (2016). Retrieved from PrecisionHawk:

http://www.precisionhawk.com/lancaster

29. Leverington, D. (2009). A Basic Introduction to Feedforward Backpropagation

Neural Networks. Retrieved from Texas Tech University:

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html

30. Lewis, P. (n.d.). Analogy between human and artificial neural nets. Retrieved from

http://users.ecs.soton.ac.uk/phl/ctit/nn/node2.html

31. M. D. Emmerson, R. I. (1993). Determining and Improving the Fault Tolerance of

Multilayer Perceptrons in a Pattern-Recognition Application. In IEEE Transactions

on Neural Networks, vol. 4 no. 5.

Page | 55

32. MacDonald, F. (2015, June 29). Scientists have built artificial neurons that fully

mimic human brain cells . Retrieved from Science Alert:

http://www.sciencealert.com/scientists-build-an-artificial-neuron-that-fully-mimics-a-

human-brain-cell

33. Management Association, I. R. (2013). Image Processing: Concepts, Methodologies,

Tools, and Applications: Concepts, Methodologies, Tools and Applications.

Information Science Reference (An Imprint of IGI Global).

34. Marzban, G. J. (1996). A neural network for tornado prediction based on Doppler

radar derived attributes. Journal of Applied Meteorology, vol. 35 .

35. Matplotlib. (n.d.). Retrieved from Matplotlib: http://matplotlib.org/

36. Multilayer Perceptron. (2016). Retrieved from Deep Learning:

http://deeplearning.net/tutorial/mlp.html

37. Multilayer Perceptron. (2016, April 4). Retrieved from Deep Learning:

http://deeplearning.net/tutorial/mlp.html

38. Multilayer Perceptron in Python. (2014, October 9). Retrieved from Code Project:

http://www.codeproject.com/Articles/821348/Multilayer-Perceptron-in-Python

39. Neural Network. (2016). Retrieved from Mu Sigma: http://www.mu-

sigma.com/analytics/thought_leadership/cafe-cerebral-neural-network.html

40. Neural Networks. (2013, April 6). Retrieved from stanford.edu:

http://ufldl.stanford.edu/wiki/index.php/Neural_Networks

41. Nielsen, M. A. (2015). How the backpropagation algorithm works. In M. A. Nielsen,

Neural Network and Deep Learning. Determination Press.

42. NumPy. (n.d.). Retrieved from Numpy: http://www.numpy.org/

43. Prasad S. Thenkabail, P. (2015). Remotely Sensed Data Characterization,

Classification, and Accuracies. CRC Press, Taylor & Francis Group.

44. Principles of Data Communications: Media Characteristics. (n.d.). Retrieved from

HN Computing: http://www.sqa.org.uk/e-learning/NetTechDC01CCD/page_39.htm

45. Python. (n.d.). Retrieved from Python: https://www.python.org/about/

46. QT Creator IDE. (n.d.). Retrieved from QT Creator IDE: QT Creator IDE

47. R. D. Reed, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward

Artificial Neural Networks. Cambridge, MA: The MIT Press.

48. R. M. Welch, S. K. (1992). Polar cloud classification using AVHRR imagery - an

inter comparison of methods. Journal of Applied Meteorology, vol. 31 .

Page | 56

49. Reich, L. (2015, June 06). PrecisionHawk Media. Retrieved from PrecisionHawk

Media: http://media.precisionhawk.com/topic/faa-approved-usaa-insurance-drone/

50. Rojas, R. (1996). Neural Networks. Berlin: Springer-Verlag.

51. Sachdeva, S. (2016, March 18). New Zealand could become first country to use

Domino's pizza delivery robot. Retrieved from Stuff.co.nz:

http://www.stuff.co.nz/business/78022236/new-zealand-could-become-first-country-

to-use-pizza-delivery-robot

52. Santayana, G. (1905-1906). The Life of Reason .

53. Stansbury, D. (2016, Spetember 8). Derivation: Derivatives for Common Neural

Network Activation Functions. Retrieved from The Clever Machine:

https://theclevermachine.wordpress.com/tag/tanh-function/

54. Stevenson, B. (2016, May 05). Amazon looks towards UAV delivery service

integration. Retrieved from FightGlobal Aviation Connected:

https://www.flightglobal.com/news/articles/amazon-looks-towards-uav-delivery-

service-integratio-424928/

55. Tag, J. E. (1992). Towards automated interpretation of satellite imagery for navy

shipboard applications. Bulletin of the American Meteorological Society, vol. 73 no. 7

.

56. Tutorials Point. (n.d.). Retrieved from Artificial Intelligence - Neural Networks:

http://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_net

works.htm

57. Types of Neural Nets. (n.d.). Retrieved from http://rfhs8012.fh-

regensburg.de/~saj39122/jfroehl/diplom/e-12-text.html

58. UAVS. (2016). Advantages of UAS. Retrieved from Unmanned Aerial Vehicle

Systems Association: https://www.uavs.org/advantages

59. V. Cherkassky, F. M. (1998). Learning from Data: Concepts, Theory and Methods.

New York: Wiley.

60. Velasquez, G. (1998). A Distributed Approach to a Neural Network Simulation

Program. El Paso: Master's thesis, The University of Texas .

61. Vinícius Gonçalves Maltarollo, K. M. (January 16, 2013). Applications of Artificial

Neural Networks in Chemical Problems. In K. M. Vinícius Gonçalves Maltarollo,

Applications of Artificial Neural Networks in Chemical Problems.

62. von der Malsburg, C. (1973). Self-organizing of orientation sensitive cells in the

striate cortex. Kybernetik.

Page | 57

63. Weisstein, E. (2016, March 22). Hyperbolic Tangent. Retrieved from Wolfram Math

World: http://mathworld.wolfram.com/HyperbolicTangent.html

64. Weisstein, E. (2016, March 22). Sigmoid Function. Retrieved from Wolfram Math

World: http://mathworld.wolfram.com/SigmoidFunction.html

65. Welcome to Pybrain. (n.d.). Retrieved from Pybrain: http://pybrain.org/

66. Wikipedia. (n.d.). Artificial neural network. Retrieved from Wikipedia, the free

encyclopedia: https://en.wikipedia.org/wiki/Artificial_neural_network

67. Wikipedia. (2016, March 25). Maxima and Minima. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Maxima_and_minima

68. Wikipedia. (n.d.). QGIS. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/QGIS

69. Zipser, D. E. (1985). Feature Discovery by Competitive Learning. Ablex Publishing.

70. Zoran Sevarac, M. K. Getting Started With Neuroph.

71. Zurada, J. M. (1992). Introduction to Artificial Neural Systems. Boston: PWS

Publishing Company.

Page | 58

GLOSSARY

Activation: A node’s level of activity; the result of applying the activation function to the

net input to the node. Typically this is also the value the node transmits.

Asynchronous: Process in which weights or activations are updated one at a time, rather

than all being updated simultaneously.

Generalization: The ability of a NN to produce reasonable responses to input patterns that is

similar, but not identical, to training patterns.

Graphical User Interface: A type of interface that allows users to interact with electronic

devices through graphical icons and visual indicators such as secondary notation, as opposed

to text-based interfaces, typed command labels or text navigation.

Inhibitory connection: Connection link between two neurons such that a signal sent over

this link will reduce the activation of the neuron that receives the signal. This may result

from the connection having a negative weight, or from the signal received being used to

reduce the activation of a neuron by scaling the net input the neuron receives from other

neurons.

Iteration: The act of repeating a process, either to generate an unbounded sequence of

outcomes, or with the aim of approaching a desired goal, target or result. Each repetition of

the process is also called an ‘iteration’ and the result of one iteration is used as the starting

point for the next iteration.

Java: A general-purpose computer programming language that is concurrent, class-based,

object-oriented, and specifically designed to have as few implementation dependencies as

possible.

Land cover: The observed (bio)physical cover on the earth's surface.

Land use:The arrangements, activities and inputs people undertake in a certain land cover

type to produce, change or maintain it.

Local and Global Minima and Maxima:In mathematical analysis, the maxima and minima

(the respective plurals of maximum and minimum) of a function, known collectively as

extrema (the plural of extremum), are the largest and smallest value of the function, either

Page | 59

within a given range (the local or relative extrema) or on the entire domain of a function (the

global or absolute extrema)

Neuron:Also known as a neurone or nerve cell. It is an electrically excitable cell that

processes and transmits information through electrical and chemical signals.

Perceptron: An algorithm for supervised learning of binary classifiers: functions that can

decide whether an input (represented by a vector of numbers) belongs to one class or another.

Synapse: In the nervous system, a synapse is a structure that permits a neuron (or nerve cell)

to pass an electrical or chemical signal to another neuron.

Synchronous updates: All weights are adjusted at the same time.

Test set: The ensemble of “input-desired” response data used to verify the performance of a

trained system. This data is not used for training.

Training epoch: One cycle through the set of training patterns.

Training set: The ensemble of “inputs” used to train the system for a supervised network. It

is the ensemble of “input-desired” response pairs used to train the system.

User Interface (UI): The design of user interfaces for machines and software, such as

computers, home appliances, mobile devices and other electronic devices, with the focus on

maximizing the user experience. The goal of user interface design is to make the user's

interaction as simple and efficient as possible, in terms of accomplishing user goals.

Validation set: The ensemble of samples that will be used to validate the parametersused in

the training (not to be confused with the test set which assesses the performance of the

classifier).

Page | 60

APPENDIX-I: USED DATA

The data used for creating training sets and testing is an orthomosaic of an urban area having

an average GSD of 2.43 cm.

Figure 9.01: Orthomosaic of the

Area

Figure 9.02: Number of

overlapping images computed for

each pixel of the orthomosaic.

Number of overlaps:

Page | 61

Table 9.01: XYZ Accuracy of the GCPs

GCP

Name

Accuracy

XY/Z [m]

Error X

[m]

Error Y

[m]

Error Z

[m]

Projection

Error [pixel]

Verified/Marked

mtp0

(3D)

0.200/

0.200

-0.131 0.223 -1.294 1.025 4 / 4

mtp1

(3D)

0.200/

0.200

0.087 -0.391 0.110 1.651 8 / 8

mtp2

(3D)

0.200/

0.200

0.093 0.200 0.768 2.348 7 / 7

mtp3

(3D)

0.200/

0.200

0.400 0.076 0.583 0.571 4 / 4

mtp4

(3D)

0.200/

0.200

-0.210 -0.073 -0.062 1.145 4 / 4

mtp5

(3D)

0.200/

0.200

-0.059 -0.019 -0.551 0.971 7 / 7

mtp6

(3D)

0.200/

0.200

-0.188 -0.012 0.445 1.190 6 / 6

Mean

[m]

 -

0.001071

0.000612 0.000014

Sigma

[m]

 0.198665 0.190737 0.667893

RMS

Error

[m]

 0.198668 0.190738 0.667893

Page | 62

APPENDIX-II: UAV HARDWARE SPECIFICATIONS

Table 9.02: Hardware specifications of PrecisionHawk Lancaster Rev 3

Hardware CPU: Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz

RAM: 59GB

GPU: Cirrus Logic GD 5446 (Driver: unknown)

Operating System Linux 3.13.0-61-generic x86_64

Camera Model

Name

NIKON1J4_1NIKKOR10mmf/2.8_10.0_5232x3488 (RGB)

Image Coordinate

System

WGS84

Ground Control

Point (GCP)

Coordinate System

WGS84

Output Coordinate

System

WGS84 / UTM zone 43N

Keypoints Image

Scale

Full, Image Scale: 1

Advanced:

Matching Image

Pairs

Aerial Grid or Corridor

Advanced:

Matching Strategy

Use Geometrically Verified Matching: yes

Advanced:

Keypoint

Extraction

Targeted Number of Keypoints: Automatic

Advanced:

Calibration

Calibration Method: Standard, Internal Parameters Optimization:

Leading, External Parameters Optimization: All, Rematch: no

